Symmetry and quantum kinetics of the nonlinear Hall effect
We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvatu...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-11, Vol.100 (19), Article 195117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Physical review. B |
container_volume | 100 |
creator | Nandy, S. Sodemann, Inti |
description | We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions. |
doi_str_mv | 10.1103/PhysRevB.100.195117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322122368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322122368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzcta08U6HOkFQ_LguaXrCNvuxJanQf2916tV5eXh5DzyMnYOYAwi8fF4P4YU-b-YgRqJTgOyITeRC6URrpY__cypO2SyErRAClNCZ0BN29To0DUU_cNNWfN-bNvYN_9i0FDc28M7xuCbedm09IuP5ytQ1J-fIxjN24kwdaPZ7p-z97vZtuUoen-4fltePicUFxoSoVLZSJeQZlK7SqdRmYYTTiBUYlZWkAZRWmKNCWxp0LlPkKmuUzF3qcMouDrs73-17CrHYdr1vx5eFRClBSlT52MJDy_ouBE-u2PlNY_xQgCi-PRV_nkYwkh9P-AW3C1z2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322122368</pqid></control><display><type>article</type><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><source>American Physical Society Journals</source><creator>Nandy, S. ; Sodemann, Inti</creator><creatorcontrib>Nandy, S. ; Sodemann, Inti</creatorcontrib><description>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.195117</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Curvature ; Dipoles ; Electric fields ; Fermions ; Formalism ; Hall effect ; Mathematical analysis ; Scattering ; Tensors ; Three dimensional models</subject><ispartof>Physical review. B, 2019-11, Vol.100 (19), Article 195117</ispartof><rights>Copyright American Physical Society Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</citedby><cites>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Nandy, S.</creatorcontrib><creatorcontrib>Sodemann, Inti</creatorcontrib><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><title>Physical review. B</title><description>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</description><subject>Curvature</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Fermions</subject><subject>Formalism</subject><subject>Hall effect</subject><subject>Mathematical analysis</subject><subject>Scattering</subject><subject>Tensors</subject><subject>Three dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzcta08U6HOkFQ_LguaXrCNvuxJanQf2916tV5eXh5DzyMnYOYAwi8fF4P4YU-b-YgRqJTgOyITeRC6URrpY__cypO2SyErRAClNCZ0BN29To0DUU_cNNWfN-bNvYN_9i0FDc28M7xuCbedm09IuP5ytQ1J-fIxjN24kwdaPZ7p-z97vZtuUoen-4fltePicUFxoSoVLZSJeQZlK7SqdRmYYTTiBUYlZWkAZRWmKNCWxp0LlPkKmuUzF3qcMouDrs73-17CrHYdr1vx5eFRClBSlT52MJDy_ouBE-u2PlNY_xQgCi-PRV_nkYwkh9P-AW3C1z2</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Nandy, S.</creator><creator>Sodemann, Inti</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191112</creationdate><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><author>Nandy, S. ; Sodemann, Inti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curvature</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Fermions</topic><topic>Formalism</topic><topic>Hall effect</topic><topic>Mathematical analysis</topic><topic>Scattering</topic><topic>Tensors</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandy, S.</creatorcontrib><creatorcontrib>Sodemann, Inti</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandy, S.</au><au>Sodemann, Inti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry and quantum kinetics of the nonlinear Hall effect</atitle><jtitle>Physical review. B</jtitle><date>2019-11-12</date><risdate>2019</risdate><volume>100</volume><issue>19</issue><artnum>195117</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.195117</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-11, Vol.100 (19), Article 195117 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2322122368 |
source | American Physical Society Journals |
subjects | Curvature Dipoles Electric fields Fermions Formalism Hall effect Mathematical analysis Scattering Tensors Three dimensional models |
title | Symmetry and quantum kinetics of the nonlinear Hall effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20and%20quantum%20kinetics%20of%20the%20nonlinear%20Hall%20effect&rft.jtitle=Physical%20review.%20B&rft.au=Nandy,%20S.&rft.date=2019-11-12&rft.volume=100&rft.issue=19&rft.artnum=195117&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.195117&rft_dat=%3Cproquest_cross%3E2322122368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322122368&rft_id=info:pmid/&rfr_iscdi=true |