Symmetry and quantum kinetics of the nonlinear Hall effect

We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-11, Vol.100 (19), Article 195117
Hauptverfasser: Nandy, S., Sodemann, Inti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Physical review. B
container_volume 100
creator Nandy, S.
Sodemann, Inti
description We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.
doi_str_mv 10.1103/PhysRevB.100.195117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322122368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322122368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzcta08U6HOkFQ_LguaXrCNvuxJanQf2916tV5eXh5DzyMnYOYAwi8fF4P4YU-b-YgRqJTgOyITeRC6URrpY__cypO2SyErRAClNCZ0BN29To0DUU_cNNWfN-bNvYN_9i0FDc28M7xuCbedm09IuP5ytQ1J-fIxjN24kwdaPZ7p-z97vZtuUoen-4fltePicUFxoSoVLZSJeQZlK7SqdRmYYTTiBUYlZWkAZRWmKNCWxp0LlPkKmuUzF3qcMouDrs73-17CrHYdr1vx5eFRClBSlT52MJDy_ouBE-u2PlNY_xQgCi-PRV_nkYwkh9P-AW3C1z2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322122368</pqid></control><display><type>article</type><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><source>American Physical Society Journals</source><creator>Nandy, S. ; Sodemann, Inti</creator><creatorcontrib>Nandy, S. ; Sodemann, Inti</creatorcontrib><description>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.195117</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Curvature ; Dipoles ; Electric fields ; Fermions ; Formalism ; Hall effect ; Mathematical analysis ; Scattering ; Tensors ; Three dimensional models</subject><ispartof>Physical review. B, 2019-11, Vol.100 (19), Article 195117</ispartof><rights>Copyright American Physical Society Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</citedby><cites>FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Nandy, S.</creatorcontrib><creatorcontrib>Sodemann, Inti</creatorcontrib><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><title>Physical review. B</title><description>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</description><subject>Curvature</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Fermions</subject><subject>Formalism</subject><subject>Hall effect</subject><subject>Mathematical analysis</subject><subject>Scattering</subject><subject>Tensors</subject><subject>Three dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzcta08U6HOkFQ_LguaXrCNvuxJanQf2916tV5eXh5DzyMnYOYAwi8fF4P4YU-b-YgRqJTgOyITeRC6URrpY__cypO2SyErRAClNCZ0BN29To0DUU_cNNWfN-bNvYN_9i0FDc28M7xuCbedm09IuP5ytQ1J-fIxjN24kwdaPZ7p-z97vZtuUoen-4fltePicUFxoSoVLZSJeQZlK7SqdRmYYTTiBUYlZWkAZRWmKNCWxp0LlPkKmuUzF3qcMouDrs73-17CrHYdr1vx5eFRClBSlT52MJDy_ouBE-u2PlNY_xQgCi-PRV_nkYwkh9P-AW3C1z2</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Nandy, S.</creator><creator>Sodemann, Inti</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191112</creationdate><title>Symmetry and quantum kinetics of the nonlinear Hall effect</title><author>Nandy, S. ; Sodemann, Inti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-eeb6cd6b1871bfd9529a4a0f933d1a67be91169638363cba3ff76efdca628f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curvature</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Fermions</topic><topic>Formalism</topic><topic>Hall effect</topic><topic>Mathematical analysis</topic><topic>Scattering</topic><topic>Tensors</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandy, S.</creatorcontrib><creatorcontrib>Sodemann, Inti</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandy, S.</au><au>Sodemann, Inti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry and quantum kinetics of the nonlinear Hall effect</atitle><jtitle>Physical review. B</jtitle><date>2019-11-12</date><risdate>2019</risdate><volume>100</volume><issue>19</issue><artnum>195117</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We argue that static nonlinear Hall conductivity can always be represented as a vector in two dimensions and as a pseudotensor in three dimensions independent of its microscopic origin. In a single-band model with a constant relaxation rate, this vector or tensor is proportional to the Berry curvature dipole I. Sodemann and L. Fu, Phys. Rev. Lett 115, 216806 (2015). Here, we develop a quantum Boltzmann formalism to second order in electric fields. We find that in addition to the Berry curvature dipole term, there exist additional disorder-mediated corrections to the nonlinear Hall tensor that have the same scaling in the impurity scattering rate. These can be thought of as the nonlinear counterparts to the side-jump and skew-scattering corrections to the Hall conductivity in the linear regime. We illustrate our formalism by computing the different contributions to the nonlinear Hall conductivity of two-dimensional tilted Dirac fermions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.195117</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-11, Vol.100 (19), Article 195117
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2322122368
source American Physical Society Journals
subjects Curvature
Dipoles
Electric fields
Fermions
Formalism
Hall effect
Mathematical analysis
Scattering
Tensors
Three dimensional models
title Symmetry and quantum kinetics of the nonlinear Hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20and%20quantum%20kinetics%20of%20the%20nonlinear%20Hall%20effect&rft.jtitle=Physical%20review.%20B&rft.au=Nandy,%20S.&rft.date=2019-11-12&rft.volume=100&rft.issue=19&rft.artnum=195117&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.195117&rft_dat=%3Cproquest_cross%3E2322122368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322122368&rft_id=info:pmid/&rfr_iscdi=true