Rubber friction and the effect of shape
Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Fricti...
Gespeichert in:
Veröffentlicht in: | Tribology international 2020-01, Vol.141, p.105911, Article 105911 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105911 |
container_title | Tribology international |
container_volume | 141 |
creator | Hale, John Lewis, Roger Carré, Matt J. |
description | Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed.
•Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity |
doi_str_mv | 10.1016/j.triboint.2019.105911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322122238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X1930430X</els_id><sourcerecordid>2322122238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQRY8eNqaSdJkc1OK_6AgiIK3kE0mNIvu1iQV_PZuWT17GhjeezPvR8g50AVQkFfdoqTYDrEvC0ZBj8ulBjggM2iUrpmQ4pDMKKdQS6XfjslJzh2lVAmtZuTyede2mKqQoitx6Cvb-6pssMIQ0JVqCFXe2C2ekqNg3zOe_c45eb27fVk91Oun-8fVzbp2vGlK7VGCtiCUlqg4p0KDEtRbBNU47WyDSwkMreOtUF6gYDLI4BsJXo4vST4nF1PuNg2fO8zFdMMu9eNJwzhjwBjjzaiSk8qlIeeEwWxT_LDp2wA1eyimM39QzB6KmaCMxuvJiGOHr4jJZBexd-hjGusaP8T_In4A_tlr-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322122238</pqid></control><display><type>article</type><title>Rubber friction and the effect of shape</title><source>Elsevier ScienceDirect Journals</source><creator>Hale, John ; Lewis, Roger ; Carré, Matt J.</creator><creatorcontrib>Hale, John ; Lewis, Roger ; Carré, Matt J.</creatorcontrib><description>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed.
•Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2019.105911</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Elastomer ; Friction ; Rubber ; Shape effects ; Sliding ; Wear</subject><ispartof>Tribology international, 2020-01, Vol.141, p.105911, Article 105911</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</citedby><cites>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301679X1930430X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hale, John</creatorcontrib><creatorcontrib>Lewis, Roger</creatorcontrib><creatorcontrib>Carré, Matt J.</creatorcontrib><title>Rubber friction and the effect of shape</title><title>Tribology international</title><description>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed.
•Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</description><subject>Elastomer</subject><subject>Friction</subject><subject>Rubber</subject><subject>Shape effects</subject><subject>Sliding</subject><subject>Wear</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQRY8eNqaSdJkc1OK_6AgiIK3kE0mNIvu1iQV_PZuWT17GhjeezPvR8g50AVQkFfdoqTYDrEvC0ZBj8ulBjggM2iUrpmQ4pDMKKdQS6XfjslJzh2lVAmtZuTyede2mKqQoitx6Cvb-6pssMIQ0JVqCFXe2C2ekqNg3zOe_c45eb27fVk91Oun-8fVzbp2vGlK7VGCtiCUlqg4p0KDEtRbBNU47WyDSwkMreOtUF6gYDLI4BsJXo4vST4nF1PuNg2fO8zFdMMu9eNJwzhjwBjjzaiSk8qlIeeEwWxT_LDp2wA1eyimM39QzB6KmaCMxuvJiGOHr4jJZBexd-hjGusaP8T_In4A_tlr-w</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hale, John</creator><creator>Lewis, Roger</creator><creator>Carré, Matt J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202001</creationdate><title>Rubber friction and the effect of shape</title><author>Hale, John ; Lewis, Roger ; Carré, Matt J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elastomer</topic><topic>Friction</topic><topic>Rubber</topic><topic>Shape effects</topic><topic>Sliding</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, John</creatorcontrib><creatorcontrib>Lewis, Roger</creatorcontrib><creatorcontrib>Carré, Matt J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, John</au><au>Lewis, Roger</au><au>Carré, Matt J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber friction and the effect of shape</atitle><jtitle>Tribology international</jtitle><date>2020-01</date><risdate>2020</risdate><volume>141</volume><spage>105911</spage><pages>105911-</pages><artnum>105911</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed.
•Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2019.105911</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2020-01, Vol.141, p.105911, Article 105911 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_journals_2322122238 |
source | Elsevier ScienceDirect Journals |
subjects | Elastomer Friction Rubber Shape effects Sliding Wear |
title | Rubber friction and the effect of shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber%20friction%20and%20the%20effect%20of%20shape&rft.jtitle=Tribology%20international&rft.au=Hale,%20John&rft.date=2020-01&rft.volume=141&rft.spage=105911&rft.pages=105911-&rft.artnum=105911&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2019.105911&rft_dat=%3Cproquest_cross%3E2322122238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322122238&rft_id=info:pmid/&rft_els_id=S0301679X1930430X&rfr_iscdi=true |