Rubber friction and the effect of shape

Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Fricti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology international 2020-01, Vol.141, p.105911, Article 105911
Hauptverfasser: Hale, John, Lewis, Roger, Carré, Matt J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105911
container_title Tribology international
container_volume 141
creator Hale, John
Lewis, Roger
Carré, Matt J.
description Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed. •Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity
doi_str_mv 10.1016/j.triboint.2019.105911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322122238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X1930430X</els_id><sourcerecordid>2322122238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQRY8eNqaSdJkc1OK_6AgiIK3kE0mNIvu1iQV_PZuWT17GhjeezPvR8g50AVQkFfdoqTYDrEvC0ZBj8ulBjggM2iUrpmQ4pDMKKdQS6XfjslJzh2lVAmtZuTyede2mKqQoitx6Cvb-6pssMIQ0JVqCFXe2C2ekqNg3zOe_c45eb27fVk91Oun-8fVzbp2vGlK7VGCtiCUlqg4p0KDEtRbBNU47WyDSwkMreOtUF6gYDLI4BsJXo4vST4nF1PuNg2fO8zFdMMu9eNJwzhjwBjjzaiSk8qlIeeEwWxT_LDp2wA1eyimM39QzB6KmaCMxuvJiGOHr4jJZBexd-hjGusaP8T_In4A_tlr-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322122238</pqid></control><display><type>article</type><title>Rubber friction and the effect of shape</title><source>Elsevier ScienceDirect Journals</source><creator>Hale, John ; Lewis, Roger ; Carré, Matt J.</creator><creatorcontrib>Hale, John ; Lewis, Roger ; Carré, Matt J.</creatorcontrib><description>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed. •Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2019.105911</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Elastomer ; Friction ; Rubber ; Shape effects ; Sliding ; Wear</subject><ispartof>Tribology international, 2020-01, Vol.141, p.105911, Article 105911</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</citedby><cites>FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301679X1930430X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hale, John</creatorcontrib><creatorcontrib>Lewis, Roger</creatorcontrib><creatorcontrib>Carré, Matt J.</creatorcontrib><title>Rubber friction and the effect of shape</title><title>Tribology international</title><description>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed. •Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</description><subject>Elastomer</subject><subject>Friction</subject><subject>Rubber</subject><subject>Shape effects</subject><subject>Sliding</subject><subject>Wear</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQRY8eNqaSdJkc1OK_6AgiIK3kE0mNIvu1iQV_PZuWT17GhjeezPvR8g50AVQkFfdoqTYDrEvC0ZBj8ulBjggM2iUrpmQ4pDMKKdQS6XfjslJzh2lVAmtZuTyede2mKqQoitx6Cvb-6pssMIQ0JVqCFXe2C2ekqNg3zOe_c45eb27fVk91Oun-8fVzbp2vGlK7VGCtiCUlqg4p0KDEtRbBNU47WyDSwkMreOtUF6gYDLI4BsJXo4vST4nF1PuNg2fO8zFdMMu9eNJwzhjwBjjzaiSk8qlIeeEwWxT_LDp2wA1eyimM39QzB6KmaCMxuvJiGOHr4jJZBexd-hjGusaP8T_In4A_tlr-w</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Hale, John</creator><creator>Lewis, Roger</creator><creator>Carré, Matt J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202001</creationdate><title>Rubber friction and the effect of shape</title><author>Hale, John ; Lewis, Roger ; Carré, Matt J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-de619a14796e7330491740dae178c9ca8e5612eac3b47d4e426f6fd861d600763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elastomer</topic><topic>Friction</topic><topic>Rubber</topic><topic>Shape effects</topic><topic>Sliding</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, John</creatorcontrib><creatorcontrib>Lewis, Roger</creatorcontrib><creatorcontrib>Carré, Matt J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, John</au><au>Lewis, Roger</au><au>Carré, Matt J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubber friction and the effect of shape</atitle><jtitle>Tribology international</jtitle><date>2020-01</date><risdate>2020</risdate><volume>141</volume><spage>105911</spage><pages>105911-</pages><artnum>105911</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Contrary to the classic laws of friction, rubber friction is not independent of shape. The friction of three shapes of the same rubber compound sliding over a dry-rough surface was measured. The three shapes had the same nominal contact area but different sliding direction-lengths and widths. Frictional differences were found between all three shapes at sliding speeds of 10 mm/s and 0.5 mm/s. The effect of frictional heating and other friction mechanisms that cause these differences are evaluated and discussed. •Highlights a relationship between shape slide-direction length and dynamic friction•Investigates rubber friction mechanisms•Finds wear locations of sliding rubber•Finds significant increase in friction with slide velocity</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2019.105911</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2020-01, Vol.141, p.105911, Article 105911
issn 0301-679X
1879-2464
language eng
recordid cdi_proquest_journals_2322122238
source Elsevier ScienceDirect Journals
subjects Elastomer
Friction
Rubber
Shape effects
Sliding
Wear
title Rubber friction and the effect of shape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubber%20friction%20and%20the%20effect%20of%20shape&rft.jtitle=Tribology%20international&rft.au=Hale,%20John&rft.date=2020-01&rft.volume=141&rft.spage=105911&rft.pages=105911-&rft.artnum=105911&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2019.105911&rft_dat=%3Cproquest_cross%3E2322122238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322122238&rft_id=info:pmid/&rft_els_id=S0301679X1930430X&rfr_iscdi=true