Arithmeticity of the monodromy of some Kodaira fibrations
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods a...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2020-01, Vol.156 (1), p.114-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | Compositio mathematica |
container_volume | 156 |
creator | Salter, Nick Tshishiku, Bena |
description | A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber. |
doi_str_mv | 10.1112/S0010437X19007668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322102978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322102978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</originalsourceid><addsrcrecordid>eNplUM1KAzEYDKJgrT6AtwXPq1--JJvssRT_sOBBBW9Lkk1oirupSXro27u13jwNzAwzwxByTeGWUop3bwAUOJOftAWQTaNOyIwKCbVQvDkls4NcH_RzcpHzBgBQoZqRdpFCWQ-uBBvKvoq-KmtXDXGMfYrDL5Hj4KqX2OuQdOWDSbqEOOZLcub1V3ZXfzgnHw_378unevX6-LxcrGqLKEqNjbSCeWt60A21om-5MHIaZakwveBeKqmNQMk5613LjFHgtKQcERlTns3JzTF3m-L3zuXSbeIujVNlhwyRArZSTS56dNkUc07Od9sUBp32HYXu8FD37yH2A3OnV4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322102978</pqid></control><display><type>article</type><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><source>Cambridge Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salter, Nick ; Tshishiku, Bena</creator><creatorcontrib>Salter, Nick ; Tshishiku, Bena</creatorcontrib><description>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X19007668</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Algebra ; Mapping</subject><ispartof>Compositio mathematica, 2020-01, Vol.156 (1), p.114-157</ispartof><rights>The Authors 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><title>Compositio mathematica</title><description>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</description><subject>Algebra</subject><subject>Mapping</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUM1KAzEYDKJgrT6AtwXPq1--JJvssRT_sOBBBW9Lkk1oirupSXro27u13jwNzAwzwxByTeGWUop3bwAUOJOftAWQTaNOyIwKCbVQvDkls4NcH_RzcpHzBgBQoZqRdpFCWQ-uBBvKvoq-KmtXDXGMfYrDL5Hj4KqX2OuQdOWDSbqEOOZLcub1V3ZXfzgnHw_378unevX6-LxcrGqLKEqNjbSCeWt60A21om-5MHIaZakwveBeKqmNQMk5613LjFHgtKQcERlTns3JzTF3m-L3zuXSbeIujVNlhwyRArZSTS56dNkUc07Od9sUBp32HYXu8FD37yH2A3OnV4w</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Salter, Nick</creator><creator>Tshishiku, Bena</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202001</creationdate><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><author>Salter, Nick ; Tshishiku, Bena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salter, Nick</au><au>Tshishiku, Bena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmeticity of the monodromy of some Kodaira fibrations</atitle><jtitle>Compositio mathematica</jtitle><date>2020-01</date><risdate>2020</risdate><volume>156</volume><issue>1</issue><spage>114</spage><epage>157</epage><pages>114-157</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1112/S0010437X19007668</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2020-01, Vol.156 (1), p.114-157 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_2322102978 |
source | Cambridge Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Mapping |
title | Arithmeticity of the monodromy of some Kodaira fibrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmeticity%20of%20the%20monodromy%20of%20some%20Kodaira%20fibrations&rft.jtitle=Compositio%20mathematica&rft.au=Salter,%20Nick&rft.date=2020-01&rft.volume=156&rft.issue=1&rft.spage=114&rft.epage=157&rft.pages=114-157&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X19007668&rft_dat=%3Cproquest_cross%3E2322102978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322102978&rft_id=info:pmid/&rfr_iscdi=true |