Arithmeticity of the monodromy of some Kodaira fibrations

A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2020-01, Vol.156 (1), p.114-157
Hauptverfasser: Salter, Nick, Tshishiku, Bena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 114
container_title Compositio mathematica
container_volume 156
creator Salter, Nick
Tshishiku, Bena
description A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
doi_str_mv 10.1112/S0010437X19007668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322102978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322102978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</originalsourceid><addsrcrecordid>eNplUM1KAzEYDKJgrT6AtwXPq1--JJvssRT_sOBBBW9Lkk1oirupSXro27u13jwNzAwzwxByTeGWUop3bwAUOJOftAWQTaNOyIwKCbVQvDkls4NcH_RzcpHzBgBQoZqRdpFCWQ-uBBvKvoq-KmtXDXGMfYrDL5Hj4KqX2OuQdOWDSbqEOOZLcub1V3ZXfzgnHw_378unevX6-LxcrGqLKEqNjbSCeWt60A21om-5MHIaZakwveBeKqmNQMk5613LjFHgtKQcERlTns3JzTF3m-L3zuXSbeIujVNlhwyRArZSTS56dNkUc07Od9sUBp32HYXu8FD37yH2A3OnV4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322102978</pqid></control><display><type>article</type><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><source>Cambridge Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salter, Nick ; Tshishiku, Bena</creator><creatorcontrib>Salter, Nick ; Tshishiku, Bena</creatorcontrib><description>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X19007668</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Algebra ; Mapping</subject><ispartof>Compositio mathematica, 2020-01, Vol.156 (1), p.114-157</ispartof><rights>The Authors 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><title>Compositio mathematica</title><description>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</description><subject>Algebra</subject><subject>Mapping</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUM1KAzEYDKJgrT6AtwXPq1--JJvssRT_sOBBBW9Lkk1oirupSXro27u13jwNzAwzwxByTeGWUop3bwAUOJOftAWQTaNOyIwKCbVQvDkls4NcH_RzcpHzBgBQoZqRdpFCWQ-uBBvKvoq-KmtXDXGMfYrDL5Hj4KqX2OuQdOWDSbqEOOZLcub1V3ZXfzgnHw_378unevX6-LxcrGqLKEqNjbSCeWt60A21om-5MHIaZakwveBeKqmNQMk5613LjFHgtKQcERlTns3JzTF3m-L3zuXSbeIujVNlhwyRArZSTS56dNkUc07Od9sUBp32HYXu8FD37yH2A3OnV4w</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Salter, Nick</creator><creator>Tshishiku, Bena</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202001</creationdate><title>Arithmeticity of the monodromy of some Kodaira fibrations</title><author>Salter, Nick ; Tshishiku, Bena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-267c53fcbd0a61c5d945b7846c15bd54f787ab527443de93bb80ea714222338f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salter, Nick</au><au>Tshishiku, Bena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmeticity of the monodromy of some Kodaira fibrations</atitle><jtitle>Compositio mathematica</jtitle><date>2020-01</date><risdate>2020</risdate><volume>156</volume><issue>1</issue><spage>114</spage><epage>157</epage><pages>114-157</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1112/S0010437X19007668</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2020-01, Vol.156 (1), p.114-157
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2322102978
source Cambridge Journals; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Mapping
title Arithmeticity of the monodromy of some Kodaira fibrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmeticity%20of%20the%20monodromy%20of%20some%20Kodaira%20fibrations&rft.jtitle=Compositio%20mathematica&rft.au=Salter,%20Nick&rft.date=2020-01&rft.volume=156&rft.issue=1&rft.spage=114&rft.epage=157&rft.pages=114-157&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X19007668&rft_dat=%3Cproquest_cross%3E2322102978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322102978&rft_id=info:pmid/&rfr_iscdi=true