From machine learning to deep learning: Advances in scoring functions for protein–ligand docking
Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand bi...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational molecular science 2020-01, Vol.10 (1), p.e1429-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e1429 |
container_title | Wiley interdisciplinary reviews. Computational molecular science |
container_volume | 10 |
creator | Shen, Chao Ding, Junjie Wang, Zhe Cao, Dongsheng Ding, Xiaoqin Hou, Tingjun |
description | Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs.
This article is categorized under:
Computer and Information Science > Chemoinformatics
This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs |
doi_str_mv | 10.1002/wcms.1429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322032606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322032606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpk8w17kqxKlRcWHAZMrnU1JmkJlNLd76Db-iTmLHSnWdzzvn5zoUfgEuMxhghMtmJNoxxRugJGOAypwmqquz0WJfFORiFsEYxMopJigegnnvXwpaLV2MVbBT31tgV7ByUSm2Owg2cyg9uhQrQWBiE8z2lt1Z0xtkAtfNw412njP3-_GrMilsJpRNvEbsAZ5o3QY3-8hAs57fL2X2yeLp7mE0XiUiLlCZ5KRFPK6qVJkKqqipQzRXBmYhSKSXVOeY1zatKpLETVGpNlKxrmVFESToEV4e18Y_3rQodW7utt_EiIykhKCUFKiJ1faCEdyF4pdnGm5b7PcOI9Say3kTWmxjZyYHdmUbt_wfZy-zx-XfiB3dKdtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322032606</pqid></control><display><type>article</type><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</creator><creatorcontrib>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</creatorcontrib><description>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs.
This article is categorized under:
Computer and Information Science > Chemoinformatics
This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1429</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Artificial intelligence ; Continuous improvement ; Deep learning ; Docking ; Drug development ; Drug discovery ; Drugs ; Exploitation ; Learning algorithms ; Ligands ; Machine learning ; molecular docking ; Proteins ; scoring function ; structure‐based drug design</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2020-01, Vol.10 (1), p.e1429-n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</citedby><cites>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</cites><orcidid>0000-0001-7227-2580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1429$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1429$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Ding, Junjie</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Ding, Xiaoqin</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><description>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs.
This article is categorized under:
Computer and Information Science > Chemoinformatics
This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</description><subject>Artificial intelligence</subject><subject>Continuous improvement</subject><subject>Deep learning</subject><subject>Docking</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drugs</subject><subject>Exploitation</subject><subject>Learning algorithms</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>molecular docking</subject><subject>Proteins</subject><subject>scoring function</subject><subject>structure‐based drug design</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpk8w17kqxKlRcWHAZMrnU1JmkJlNLd76Db-iTmLHSnWdzzvn5zoUfgEuMxhghMtmJNoxxRugJGOAypwmqquz0WJfFORiFsEYxMopJigegnnvXwpaLV2MVbBT31tgV7ByUSm2Owg2cyg9uhQrQWBiE8z2lt1Z0xtkAtfNw412njP3-_GrMilsJpRNvEbsAZ5o3QY3-8hAs57fL2X2yeLp7mE0XiUiLlCZ5KRFPK6qVJkKqqipQzRXBmYhSKSXVOeY1zatKpLETVGpNlKxrmVFESToEV4e18Y_3rQodW7utt_EiIykhKCUFKiJ1faCEdyF4pdnGm5b7PcOI9Say3kTWmxjZyYHdmUbt_wfZy-zx-XfiB3dKdtg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Shen, Chao</creator><creator>Ding, Junjie</creator><creator>Wang, Zhe</creator><creator>Cao, Dongsheng</creator><creator>Ding, Xiaoqin</creator><creator>Hou, Tingjun</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></search><sort><creationdate>202001</creationdate><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><author>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Continuous improvement</topic><topic>Deep learning</topic><topic>Docking</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drugs</topic><topic>Exploitation</topic><topic>Learning algorithms</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>molecular docking</topic><topic>Proteins</topic><topic>scoring function</topic><topic>structure‐based drug design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Ding, Junjie</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Ding, Xiaoqin</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chao</au><au>Ding, Junjie</au><au>Wang, Zhe</au><au>Cao, Dongsheng</au><au>Ding, Xiaoqin</au><au>Hou, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><date>2020-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>e1429</spage><epage>n/a</epage><pages>e1429-n/a</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs.
This article is categorized under:
Computer and Information Science > Chemoinformatics
This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1429</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-0876 |
ispartof | Wiley interdisciplinary reviews. Computational molecular science, 2020-01, Vol.10 (1), p.e1429-n/a |
issn | 1759-0876 1759-0884 |
language | eng |
recordid | cdi_proquest_journals_2322032606 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial intelligence Continuous improvement Deep learning Docking Drug development Drug discovery Drugs Exploitation Learning algorithms Ligands Machine learning molecular docking Proteins scoring function structure‐based drug design |
title | From machine learning to deep learning: Advances in scoring functions for protein–ligand docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20machine%20learning%20to%20deep%20learning:%20Advances%20in%20scoring%20functions%20for%20protein%E2%80%93ligand%20docking&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Shen,%20Chao&rft.date=2020-01&rft.volume=10&rft.issue=1&rft.spage=e1429&rft.epage=n/a&rft.pages=e1429-n/a&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1429&rft_dat=%3Cproquest_cross%3E2322032606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322032606&rft_id=info:pmid/&rfr_iscdi=true |