From machine learning to deep learning: Advances in scoring functions for protein–ligand docking

Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational molecular science 2020-01, Vol.10 (1), p.e1429-n/a
Hauptverfasser: Shen, Chao, Ding, Junjie, Wang, Zhe, Cao, Dongsheng, Ding, Xiaoqin, Hou, Tingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e1429
container_title Wiley interdisciplinary reviews. Computational molecular science
container_volume 10
creator Shen, Chao
Ding, Junjie
Wang, Zhe
Cao, Dongsheng
Ding, Xiaoqin
Hou, Tingjun
description Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs. This article is categorized under: Computer and Information Science > Chemoinformatics This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs
doi_str_mv 10.1002/wcms.1429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322032606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322032606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpk8w17kqxKlRcWHAZMrnU1JmkJlNLd76Db-iTmLHSnWdzzvn5zoUfgEuMxhghMtmJNoxxRugJGOAypwmqquz0WJfFORiFsEYxMopJigegnnvXwpaLV2MVbBT31tgV7ByUSm2Owg2cyg9uhQrQWBiE8z2lt1Z0xtkAtfNw412njP3-_GrMilsJpRNvEbsAZ5o3QY3-8hAs57fL2X2yeLp7mE0XiUiLlCZ5KRFPK6qVJkKqqipQzRXBmYhSKSXVOeY1zatKpLETVGpNlKxrmVFESToEV4e18Y_3rQodW7utt_EiIykhKCUFKiJ1faCEdyF4pdnGm5b7PcOI9Say3kTWmxjZyYHdmUbt_wfZy-zx-XfiB3dKdtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322032606</pqid></control><display><type>article</type><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</creator><creatorcontrib>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</creatorcontrib><description>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs. This article is categorized under: Computer and Information Science &gt; Chemoinformatics This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1429</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Artificial intelligence ; Continuous improvement ; Deep learning ; Docking ; Drug development ; Drug discovery ; Drugs ; Exploitation ; Learning algorithms ; Ligands ; Machine learning ; molecular docking ; Proteins ; scoring function ; structure‐based drug design</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2020-01, Vol.10 (1), p.e1429-n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</citedby><cites>FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</cites><orcidid>0000-0001-7227-2580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1429$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1429$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Ding, Junjie</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Ding, Xiaoqin</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><description>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs. This article is categorized under: Computer and Information Science &gt; Chemoinformatics This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</description><subject>Artificial intelligence</subject><subject>Continuous improvement</subject><subject>Deep learning</subject><subject>Docking</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drugs</subject><subject>Exploitation</subject><subject>Learning algorithms</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>molecular docking</subject><subject>Proteins</subject><subject>scoring function</subject><subject>structure‐based drug design</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpk8w17kqxKlRcWHAZMrnU1JmkJlNLd76Db-iTmLHSnWdzzvn5zoUfgEuMxhghMtmJNoxxRugJGOAypwmqquz0WJfFORiFsEYxMopJigegnnvXwpaLV2MVbBT31tgV7ByUSm2Owg2cyg9uhQrQWBiE8z2lt1Z0xtkAtfNw412njP3-_GrMilsJpRNvEbsAZ5o3QY3-8hAs57fL2X2yeLp7mE0XiUiLlCZ5KRFPK6qVJkKqqipQzRXBmYhSKSXVOeY1zatKpLETVGpNlKxrmVFESToEV4e18Y_3rQodW7utt_EiIykhKCUFKiJ1faCEdyF4pdnGm5b7PcOI9Say3kTWmxjZyYHdmUbt_wfZy-zx-XfiB3dKdtg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Shen, Chao</creator><creator>Ding, Junjie</creator><creator>Wang, Zhe</creator><creator>Cao, Dongsheng</creator><creator>Ding, Xiaoqin</creator><creator>Hou, Tingjun</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></search><sort><creationdate>202001</creationdate><title>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</title><author>Shen, Chao ; Ding, Junjie ; Wang, Zhe ; Cao, Dongsheng ; Ding, Xiaoqin ; Hou, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-57d0a389fef2cde8860bae214c9fe7dd9f51ab9588c3dd9c9dff2edbbd490923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Continuous improvement</topic><topic>Deep learning</topic><topic>Docking</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drugs</topic><topic>Exploitation</topic><topic>Learning algorithms</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>molecular docking</topic><topic>Proteins</topic><topic>scoring function</topic><topic>structure‐based drug design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Ding, Junjie</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Ding, Xiaoqin</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chao</au><au>Ding, Junjie</au><au>Wang, Zhe</au><au>Cao, Dongsheng</au><au>Ding, Xiaoqin</au><au>Hou, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From machine learning to deep learning: Advances in scoring functions for protein–ligand docking</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><date>2020-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>e1429</spage><epage>n/a</epage><pages>e1429-n/a</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>Molecule docking has been regarded as a routine tool for drug discovery, but its accuracy highly depends on the reliability of scoring functions (SFs). With the rapid development of machine learning (ML) techniques, ML‐based SFs have gradually emerged as a promising alternative for protein–ligand binding affinity prediction and virtual screening, and most of them have shown significantly better performance than a wide range of classical SFs. Emergence of more data‐hungry deep learning (DL) approaches in recent years further fascinates the exploitation of more accurate SFs. Here, we summarize the progress of traditional ML‐based SFs in the last few years and provide insights into recently developed DL‐based SFs. We believe that the continuous improvement in ML‐based SFs can surely guide the early‐stage drug design and accelerate the discovery of new drugs. This article is categorized under: Computer and Information Science &gt; Chemoinformatics This overview summarizes the progress of traditional ML‐based SFs in the last few years and provides insights into recently developed DL‐based SFs</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1429</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-0876
ispartof Wiley interdisciplinary reviews. Computational molecular science, 2020-01, Vol.10 (1), p.e1429-n/a
issn 1759-0876
1759-0884
language eng
recordid cdi_proquest_journals_2322032606
source Wiley Online Library Journals Frontfile Complete
subjects Artificial intelligence
Continuous improvement
Deep learning
Docking
Drug development
Drug discovery
Drugs
Exploitation
Learning algorithms
Ligands
Machine learning
molecular docking
Proteins
scoring function
structure‐based drug design
title From machine learning to deep learning: Advances in scoring functions for protein–ligand docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20machine%20learning%20to%20deep%20learning:%20Advances%20in%20scoring%20functions%20for%20protein%E2%80%93ligand%20docking&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Shen,%20Chao&rft.date=2020-01&rft.volume=10&rft.issue=1&rft.spage=e1429&rft.epage=n/a&rft.pages=e1429-n/a&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1429&rft_dat=%3Cproquest_cross%3E2322032606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322032606&rft_id=info:pmid/&rfr_iscdi=true