Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression
This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least...
Gespeichert in:
Veröffentlicht in: | Transactions in GIS 2019-12, Vol.23 (6), p.1444-1464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1464 |
---|---|
container_issue | 6 |
container_start_page | 1444 |
container_title | Transactions in GIS |
container_volume | 23 |
creator | Fotheringham, A. Stewart Yue, Han Li, Ziqi |
description | This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate. |
doi_str_mv | 10.1111/tgis.12580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322008579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322008579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-b03087e2bd1f928435570b0512fe5375aefe8094c6c8e570c83d45a4ee8f15943</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYvPsGCB0FI3T_Z7OYopdZCwYP1vGzTSbIlTdrdhJqbj-Az-iRujWfnMjN8v28GPoRuKZnQUI9tYf2EMqHIGRrROJFRmkh6Hmae0Igmil2iK--3hJA4TuUI7WcfZmdrWxe4LQHbOq86qDPwuMmxsQ4fOlPZtg8Knpa2NvceZ7a1Aej8ybXrqtZ-f375zFSAC2gKZ_alDVvV4yPYomxhgx0UDry3TX2NLnJTebj562P0_jxbTV-i5et8MX1aRhlPJInWhBMlga03NE-ZirkQkqyJoCwHwaUwkIMiaZwlmYIgZYpvYmFiAJVTkcZ8jO6Gu3vXHDrwrd42navDS804Y4QoIdNAPQxU5hrvHeR67-zOuF5Tok-J6lOi-jfRANMBPtoK-n9IvZov3gbPD47wevQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322008579</pqid></control><display><type>article</type><title>Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Fotheringham, A. Stewart ; Yue, Han ; Li, Ziqi</creator><creatorcontrib>Fotheringham, A. Stewart ; Yue, Han ; Li, Ziqi</creatorcontrib><description>This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12580</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Air pollution ; Air quality ; Autocorrelation ; Dependent variables ; Economic models ; Outdoor air quality ; Pollution ; Regression models ; Replication</subject><ispartof>Transactions in GIS, 2019-12, Vol.23 (6), p.1444-1464</ispartof><rights>2019 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-b03087e2bd1f928435570b0512fe5375aefe8094c6c8e570c83d45a4ee8f15943</citedby><cites>FETCH-LOGICAL-c3670-b03087e2bd1f928435570b0512fe5375aefe8094c6c8e570c83d45a4ee8f15943</cites><orcidid>0000-0002-5869-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftgis.12580$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftgis.12580$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><creatorcontrib>Yue, Han</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><title>Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression</title><title>Transactions in GIS</title><description>This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Autocorrelation</subject><subject>Dependent variables</subject><subject>Economic models</subject><subject>Outdoor air quality</subject><subject>Pollution</subject><subject>Regression models</subject><subject>Replication</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYvPsGCB0FI3T_Z7OYopdZCwYP1vGzTSbIlTdrdhJqbj-Az-iRujWfnMjN8v28GPoRuKZnQUI9tYf2EMqHIGRrROJFRmkh6Hmae0Igmil2iK--3hJA4TuUI7WcfZmdrWxe4LQHbOq86qDPwuMmxsQ4fOlPZtg8Knpa2NvceZ7a1Aej8ybXrqtZ-f375zFSAC2gKZ_alDVvV4yPYomxhgx0UDry3TX2NLnJTebj562P0_jxbTV-i5et8MX1aRhlPJInWhBMlga03NE-ZirkQkqyJoCwHwaUwkIMiaZwlmYIgZYpvYmFiAJVTkcZ8jO6Gu3vXHDrwrd42navDS804Y4QoIdNAPQxU5hrvHeR67-zOuF5Tok-J6lOi-jfRANMBPtoK-n9IvZov3gbPD47wevQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Fotheringham, A. Stewart</creator><creator>Yue, Han</creator><creator>Li, Ziqi</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5869-7424</orcidid></search><sort><creationdate>201912</creationdate><title>Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression</title><author>Fotheringham, A. Stewart ; Yue, Han ; Li, Ziqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-b03087e2bd1f928435570b0512fe5375aefe8094c6c8e570c83d45a4ee8f15943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Autocorrelation</topic><topic>Dependent variables</topic><topic>Economic models</topic><topic>Outdoor air quality</topic><topic>Pollution</topic><topic>Regression models</topic><topic>Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><creatorcontrib>Yue, Han</creatorcontrib><creatorcontrib>Li, Ziqi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fotheringham, A. Stewart</au><au>Yue, Han</au><au>Li, Ziqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression</atitle><jtitle>Transactions in GIS</jtitle><date>2019-12</date><risdate>2019</risdate><volume>23</volume><issue>6</issue><spage>1444</spage><epage>1464</epage><pages>1444-1464</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12580</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5869-7424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2019-12, Vol.23 (6), p.1444-1464 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2322008579 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Air pollution Air quality Autocorrelation Dependent variables Economic models Outdoor air quality Pollution Regression models Replication |
title | Examining the influences of air quality in China's cities using multi‐scale geographically weighted regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20influences%20of%20air%20quality%20in%20China's%20cities%20using%20multi%E2%80%90scale%20geographically%20weighted%20regression&rft.jtitle=Transactions%20in%20GIS&rft.au=Fotheringham,%20A.%20Stewart&rft.date=2019-12&rft.volume=23&rft.issue=6&rft.spage=1444&rft.epage=1464&rft.pages=1444-1464&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12580&rft_dat=%3Cproquest_cross%3E2322008579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322008579&rft_id=info:pmid/&rfr_iscdi=true |