Modeling and forecasting Tapis crude oil price: A long memory approach

This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rahman, Rosmanjawati Abdul, Jibrin, Sanusi Alhaji
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2184
creator Rahman, Rosmanjawati Abdul
Jibrin, Sanusi Alhaji
description This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.
doi_str_mv 10.1063/1.5136393
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2321962475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321962475</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-73bb1fc36cd52dd0cf3ab3c57659eabf1bd66c4604f76569546e30a29cd78eb93</originalsourceid><addsrcrecordid>eNotkEFLAzEQhYMoWKsH_0HAm7A1k9kkjbdSrAoVLxW8hWyS1S3bzZpsD_33bmlPw5v3MW94hNwDmwGT-AQzAShR4wWZgBBQKAnykkwY02XBS_y-Jjc5bxnjWqn5hKw-og9t0_1Q23laxxSczcNRb2zfZOrS3gcam5b2qXHhmS5oG0d3F3YxHajt-xSt-70lV7Vtc7g7zyn5Wr1slm_F-vP1fblYFz2H-VAorCqoHUrnBfeeuRpthU4oKXSwVQ2Vl9KVkpX1uJJalDIgs1w7r-ah0jglD6e7Y-zfPuTBbOM-dWOk4chBS14qMVKPJyq7ZrBDEzszfr-z6WCAmWNPBsy5J_wHAaNZiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321962475</pqid></control><display><type>conference_proceeding</type><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><source>AIP Journals Complete</source><creator>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136393</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crude oil ; Crude oil prices ; Dependence ; Forecasting ; Integrals ; International markets ; Mathematical models</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136393$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Rahman, Rosmanjawati Abdul</creatorcontrib><creatorcontrib>Jibrin, Sanusi Alhaji</creatorcontrib><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><title>AIP conference proceedings</title><description>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</description><subject>Crude oil</subject><subject>Crude oil prices</subject><subject>Dependence</subject><subject>Forecasting</subject><subject>Integrals</subject><subject>International markets</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLAzEQhYMoWKsH_0HAm7A1k9kkjbdSrAoVLxW8hWyS1S3bzZpsD_33bmlPw5v3MW94hNwDmwGT-AQzAShR4wWZgBBQKAnykkwY02XBS_y-Jjc5bxnjWqn5hKw-og9t0_1Q23laxxSczcNRb2zfZOrS3gcam5b2qXHhmS5oG0d3F3YxHajt-xSt-70lV7Vtc7g7zyn5Wr1slm_F-vP1fblYFz2H-VAorCqoHUrnBfeeuRpthU4oKXSwVQ2Vl9KVkpX1uJJalDIgs1w7r-ah0jglD6e7Y-zfPuTBbOM-dWOk4chBS14qMVKPJyq7ZrBDEzszfr-z6WCAmWNPBsy5J_wHAaNZiA</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Rahman, Rosmanjawati Abdul</creator><creator>Jibrin, Sanusi Alhaji</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><author>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-73bb1fc36cd52dd0cf3ab3c57659eabf1bd66c4604f76569546e30a29cd78eb93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crude oil</topic><topic>Crude oil prices</topic><topic>Dependence</topic><topic>Forecasting</topic><topic>Integrals</topic><topic>International markets</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Rosmanjawati Abdul</creatorcontrib><creatorcontrib>Jibrin, Sanusi Alhaji</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Rosmanjawati Abdul</au><au>Jibrin, Sanusi Alhaji</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and forecasting Tapis crude oil price: A long memory approach</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136393</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2184 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2321962475
source AIP Journals Complete
subjects Crude oil
Crude oil prices
Dependence
Forecasting
Integrals
International markets
Mathematical models
title Modeling and forecasting Tapis crude oil price: A long memory approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20forecasting%20Tapis%20crude%20oil%20price:%20A%20long%20memory%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Rahman,%20Rosmanjawati%20Abdul&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136393&rft_dat=%3Cproquest_scita%3E2321962475%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321962475&rft_id=info:pmid/&rfr_iscdi=true