Modeling and forecasting Tapis crude oil price: A long memory approach
This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2184 |
creator | Rahman, Rosmanjawati Abdul Jibrin, Sanusi Alhaji |
description | This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price. |
doi_str_mv | 10.1063/1.5136393 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2321962475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321962475</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-73bb1fc36cd52dd0cf3ab3c57659eabf1bd66c4604f76569546e30a29cd78eb93</originalsourceid><addsrcrecordid>eNotkEFLAzEQhYMoWKsH_0HAm7A1k9kkjbdSrAoVLxW8hWyS1S3bzZpsD_33bmlPw5v3MW94hNwDmwGT-AQzAShR4wWZgBBQKAnykkwY02XBS_y-Jjc5bxnjWqn5hKw-og9t0_1Q23laxxSczcNRb2zfZOrS3gcam5b2qXHhmS5oG0d3F3YxHajt-xSt-70lV7Vtc7g7zyn5Wr1slm_F-vP1fblYFz2H-VAorCqoHUrnBfeeuRpthU4oKXSwVQ2Vl9KVkpX1uJJalDIgs1w7r-ah0jglD6e7Y-zfPuTBbOM-dWOk4chBS14qMVKPJyq7ZrBDEzszfr-z6WCAmWNPBsy5J_wHAaNZiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2321962475</pqid></control><display><type>conference_proceeding</type><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><source>AIP Journals Complete</source><creator>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji</creator><contributor>Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</contributor><creatorcontrib>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji ; Ismail, Mohd Tahir ; Rahman, Rosmanjawati Abdul ; Yatim, Yazariah Mohd ; Sulaiman, Hajar ; Abdullah, Farah Aini ; Ahmad, Syakila ; Ali, Majid Khan Majahar ; Ramli, Norshafira ; Ahmad, Noor Atinah</creatorcontrib><description>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5136393</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crude oil ; Crude oil prices ; Dependence ; Forecasting ; Integrals ; International markets ; Mathematical models</subject><ispartof>AIP conference proceedings, 2019, Vol.2184 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5136393$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Ismail, Mohd Tahir</contributor><contributor>Rahman, Rosmanjawati Abdul</contributor><contributor>Yatim, Yazariah Mohd</contributor><contributor>Sulaiman, Hajar</contributor><contributor>Abdullah, Farah Aini</contributor><contributor>Ahmad, Syakila</contributor><contributor>Ali, Majid Khan Majahar</contributor><contributor>Ramli, Norshafira</contributor><contributor>Ahmad, Noor Atinah</contributor><creatorcontrib>Rahman, Rosmanjawati Abdul</creatorcontrib><creatorcontrib>Jibrin, Sanusi Alhaji</creatorcontrib><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><title>AIP conference proceedings</title><description>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</description><subject>Crude oil</subject><subject>Crude oil prices</subject><subject>Dependence</subject><subject>Forecasting</subject><subject>Integrals</subject><subject>International markets</subject><subject>Mathematical models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLAzEQhYMoWKsH_0HAm7A1k9kkjbdSrAoVLxW8hWyS1S3bzZpsD_33bmlPw5v3MW94hNwDmwGT-AQzAShR4wWZgBBQKAnykkwY02XBS_y-Jjc5bxnjWqn5hKw-og9t0_1Q23laxxSczcNRb2zfZOrS3gcam5b2qXHhmS5oG0d3F3YxHajt-xSt-70lV7Vtc7g7zyn5Wr1slm_F-vP1fblYFz2H-VAorCqoHUrnBfeeuRpthU4oKXSwVQ2Vl9KVkpX1uJJalDIgs1w7r-ah0jglD6e7Y-zfPuTBbOM-dWOk4chBS14qMVKPJyq7ZrBDEzszfr-z6WCAmWNPBsy5J_wHAaNZiA</recordid><startdate>20191204</startdate><enddate>20191204</enddate><creator>Rahman, Rosmanjawati Abdul</creator><creator>Jibrin, Sanusi Alhaji</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191204</creationdate><title>Modeling and forecasting Tapis crude oil price: A long memory approach</title><author>Rahman, Rosmanjawati Abdul ; Jibrin, Sanusi Alhaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-73bb1fc36cd52dd0cf3ab3c57659eabf1bd66c4604f76569546e30a29cd78eb93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crude oil</topic><topic>Crude oil prices</topic><topic>Dependence</topic><topic>Forecasting</topic><topic>Integrals</topic><topic>International markets</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Rosmanjawati Abdul</creatorcontrib><creatorcontrib>Jibrin, Sanusi Alhaji</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Rosmanjawati Abdul</au><au>Jibrin, Sanusi Alhaji</au><au>Ismail, Mohd Tahir</au><au>Rahman, Rosmanjawati Abdul</au><au>Yatim, Yazariah Mohd</au><au>Sulaiman, Hajar</au><au>Abdullah, Farah Aini</au><au>Ahmad, Syakila</au><au>Ali, Majid Khan Majahar</au><au>Ramli, Norshafira</au><au>Ahmad, Noor Atinah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and forecasting Tapis crude oil price: A long memory approach</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-04</date><risdate>2019</risdate><volume>2184</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper proposes a fractional filter and Auto Regressive Fractional Unit Root Integral Moving Average (ARFURIMA) model on daily Malaysian Tapis Crude Oil Price (MTCOP) for the period 4th June 2007 to 29th June 2018. The goodness of fits and dependence tests of each model are discussed. Results indicate that ARFURIMA model is superior to the Auto Regressive Integral Moving Average (ARIMA) and Auto Regressive Fractional Integral Moving Average (ARFIMA) models in modelling and forecasting the Tapis Crude Oil Price.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5136393</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2184 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2321962475 |
source | AIP Journals Complete |
subjects | Crude oil Crude oil prices Dependence Forecasting Integrals International markets Mathematical models |
title | Modeling and forecasting Tapis crude oil price: A long memory approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20forecasting%20Tapis%20crude%20oil%20price:%20A%20long%20memory%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Rahman,%20Rosmanjawati%20Abdul&rft.date=2019-12-04&rft.volume=2184&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5136393&rft_dat=%3Cproquest_scita%3E2321962475%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321962475&rft_id=info:pmid/&rfr_iscdi=true |