Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams
The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the ce...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2019-12, Vol.145, p.103168, Article 103168 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103168 |
container_title | International journal of engineering science |
container_volume | 145 |
creator | Gebhart, Thomas M.J. Jehnichen, Dieter Koschichow, Roman Müller, Michael Göbel, Michael Geske, Vinzenz Stegelmann, Michael Gude, Maik |
description | The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach. |
doi_str_mv | 10.1016/j.ijengsci.2019.103168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321862987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722518327009</els_id><sourcerecordid>2321862987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-ggRcd8yjbdKdMviCETe6DmlyO01pm5p0hPn3ZqiuXR24fOfcew9CN5SsKaHlXbd2HYy7aNyaEVqlIaelPEErKkWVMVqJU7QihJFMMFaco4sYO0JIwatqhbq3fT-7LBrdAx68hb534w7raQpemxbPHrd-8DsYXQQ8twkC0-rRJQNOzARhdhCxb_Dk-8MAwRlseh_BZiaF4Rq0xY3XQ7xCZ43uI1z_6iX6fHr82Lxk2_fn183DNjNcyjmDXGhhJMicVxZqo6kuSyG5NbTmomjqsoE8B5oLpnnBuKzBWkhAUdWNSHqJbpfcdN7XHuKsOr8PY1qpGGdUlqySIlHlQpngYwzQqCm4QYeDokQde1Wd-utVHXtVS6_JeL8YIf3w7SCoRMBowLoAZlbWu_8ifgCbRIaH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321862987</pqid></control><display><type>article</type><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</creator><creatorcontrib>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</creatorcontrib><description>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.103168</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Closed-cell foam ; Compressive properties ; Computed tomography ; Crystal structure ; Crystallinity ; Homogenisation ; Laguerre tessellation ; Material properties ; Mechanical properties ; Morphology ; Multi-scale modelling ; Numerical prediction ; Optical microscopy ; Physical properties ; Plastic foam ; Statistical properties/methods ; Stress state ; Tensile strength ; Tessellation ; Test procedures ; Wall thickness ; X-ray scattering</subject><ispartof>International journal of engineering science, 2019-12, Vol.145, p.103168, Article 103168</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</citedby><cites>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</cites><orcidid>0000-0001-5677-8311 ; 0000-0003-3624-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020722518327009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gebhart, Thomas M.J.</creatorcontrib><creatorcontrib>Jehnichen, Dieter</creatorcontrib><creatorcontrib>Koschichow, Roman</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Göbel, Michael</creatorcontrib><creatorcontrib>Geske, Vinzenz</creatorcontrib><creatorcontrib>Stegelmann, Michael</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><title>International journal of engineering science</title><description>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</description><subject>Closed-cell foam</subject><subject>Compressive properties</subject><subject>Computed tomography</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Homogenisation</subject><subject>Laguerre tessellation</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multi-scale modelling</subject><subject>Numerical prediction</subject><subject>Optical microscopy</subject><subject>Physical properties</subject><subject>Plastic foam</subject><subject>Statistical properties/methods</subject><subject>Stress state</subject><subject>Tensile strength</subject><subject>Tessellation</subject><subject>Test procedures</subject><subject>Wall thickness</subject><subject>X-ray scattering</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-ggRcd8yjbdKdMviCETe6DmlyO01pm5p0hPn3ZqiuXR24fOfcew9CN5SsKaHlXbd2HYy7aNyaEVqlIaelPEErKkWVMVqJU7QihJFMMFaco4sYO0JIwatqhbq3fT-7LBrdAx68hb534w7raQpemxbPHrd-8DsYXQQ8twkC0-rRJQNOzARhdhCxb_Dk-8MAwRlseh_BZiaF4Rq0xY3XQ7xCZ43uI1z_6iX6fHr82Lxk2_fn183DNjNcyjmDXGhhJMicVxZqo6kuSyG5NbTmomjqsoE8B5oLpnnBuKzBWkhAUdWNSHqJbpfcdN7XHuKsOr8PY1qpGGdUlqySIlHlQpngYwzQqCm4QYeDokQde1Wd-utVHXtVS6_JeL8YIf3w7SCoRMBowLoAZlbWu_8ifgCbRIaH</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Gebhart, Thomas M.J.</creator><creator>Jehnichen, Dieter</creator><creator>Koschichow, Roman</creator><creator>Müller, Michael</creator><creator>Göbel, Michael</creator><creator>Geske, Vinzenz</creator><creator>Stegelmann, Michael</creator><creator>Gude, Maik</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5677-8311</orcidid><orcidid>https://orcid.org/0000-0003-3624-3242</orcidid></search><sort><creationdate>201912</creationdate><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><author>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed-cell foam</topic><topic>Compressive properties</topic><topic>Computed tomography</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Homogenisation</topic><topic>Laguerre tessellation</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multi-scale modelling</topic><topic>Numerical prediction</topic><topic>Optical microscopy</topic><topic>Physical properties</topic><topic>Plastic foam</topic><topic>Statistical properties/methods</topic><topic>Stress state</topic><topic>Tensile strength</topic><topic>Tessellation</topic><topic>Test procedures</topic><topic>Wall thickness</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhart, Thomas M.J.</creatorcontrib><creatorcontrib>Jehnichen, Dieter</creatorcontrib><creatorcontrib>Koschichow, Roman</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Göbel, Michael</creatorcontrib><creatorcontrib>Geske, Vinzenz</creatorcontrib><creatorcontrib>Stegelmann, Michael</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhart, Thomas M.J.</au><au>Jehnichen, Dieter</au><au>Koschichow, Roman</au><au>Müller, Michael</au><au>Göbel, Michael</au><au>Geske, Vinzenz</au><au>Stegelmann, Michael</au><au>Gude, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</atitle><jtitle>International journal of engineering science</jtitle><date>2019-12</date><risdate>2019</risdate><volume>145</volume><spage>103168</spage><pages>103168-</pages><artnum>103168</artnum><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.103168</doi><orcidid>https://orcid.org/0000-0001-5677-8311</orcidid><orcidid>https://orcid.org/0000-0003-3624-3242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 2019-12, Vol.145, p.103168, Article 103168 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_proquest_journals_2321862987 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Closed-cell foam Compressive properties Computed tomography Crystal structure Crystallinity Homogenisation Laguerre tessellation Material properties Mechanical properties Morphology Multi-scale modelling Numerical prediction Optical microscopy Physical properties Plastic foam Statistical properties/methods Stress state Tensile strength Tessellation Test procedures Wall thickness X-ray scattering |
title | Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modelling%20approach%20to%20homogenise%20the%20mechanical%20properties%20of%20polymeric%20closed-cell%20bead%20foams&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Gebhart,%20Thomas%20M.J.&rft.date=2019-12&rft.volume=145&rft.spage=103168&rft.pages=103168-&rft.artnum=103168&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.103168&rft_dat=%3Cproquest_cross%3E2321862987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321862987&rft_id=info:pmid/&rft_els_id=S0020722518327009&rfr_iscdi=true |