Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams

The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2019-12, Vol.145, p.103168, Article 103168
Hauptverfasser: Gebhart, Thomas M.J., Jehnichen, Dieter, Koschichow, Roman, Müller, Michael, Göbel, Michael, Geske, Vinzenz, Stegelmann, Michael, Gude, Maik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103168
container_title International journal of engineering science
container_volume 145
creator Gebhart, Thomas M.J.
Jehnichen, Dieter
Koschichow, Roman
Müller, Michael
Göbel, Michael
Geske, Vinzenz
Stegelmann, Michael
Gude, Maik
description The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.
doi_str_mv 10.1016/j.ijengsci.2019.103168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321862987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722518327009</els_id><sourcerecordid>2321862987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD7-ggRcd8yjbdKdMviCETe6DmlyO01pm5p0hPn3ZqiuXR24fOfcew9CN5SsKaHlXbd2HYy7aNyaEVqlIaelPEErKkWVMVqJU7QihJFMMFaco4sYO0JIwatqhbq3fT-7LBrdAx68hb534w7raQpemxbPHrd-8DsYXQQ8twkC0-rRJQNOzARhdhCxb_Dk-8MAwRlseh_BZiaF4Rq0xY3XQ7xCZ43uI1z_6iX6fHr82Lxk2_fn183DNjNcyjmDXGhhJMicVxZqo6kuSyG5NbTmomjqsoE8B5oLpnnBuKzBWkhAUdWNSHqJbpfcdN7XHuKsOr8PY1qpGGdUlqySIlHlQpngYwzQqCm4QYeDokQde1Wd-utVHXtVS6_JeL8YIf3w7SCoRMBowLoAZlbWu_8ifgCbRIaH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321862987</pqid></control><display><type>article</type><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</creator><creatorcontrib>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</creatorcontrib><description>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.103168</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Closed-cell foam ; Compressive properties ; Computed tomography ; Crystal structure ; Crystallinity ; Homogenisation ; Laguerre tessellation ; Material properties ; Mechanical properties ; Morphology ; Multi-scale modelling ; Numerical prediction ; Optical microscopy ; Physical properties ; Plastic foam ; Statistical properties/methods ; Stress state ; Tensile strength ; Tessellation ; Test procedures ; Wall thickness ; X-ray scattering</subject><ispartof>International journal of engineering science, 2019-12, Vol.145, p.103168, Article 103168</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</citedby><cites>FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</cites><orcidid>0000-0001-5677-8311 ; 0000-0003-3624-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020722518327009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gebhart, Thomas M.J.</creatorcontrib><creatorcontrib>Jehnichen, Dieter</creatorcontrib><creatorcontrib>Koschichow, Roman</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Göbel, Michael</creatorcontrib><creatorcontrib>Geske, Vinzenz</creatorcontrib><creatorcontrib>Stegelmann, Michael</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><title>International journal of engineering science</title><description>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</description><subject>Closed-cell foam</subject><subject>Compressive properties</subject><subject>Computed tomography</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Homogenisation</subject><subject>Laguerre tessellation</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multi-scale modelling</subject><subject>Numerical prediction</subject><subject>Optical microscopy</subject><subject>Physical properties</subject><subject>Plastic foam</subject><subject>Statistical properties/methods</subject><subject>Stress state</subject><subject>Tensile strength</subject><subject>Tessellation</subject><subject>Test procedures</subject><subject>Wall thickness</subject><subject>X-ray scattering</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD7-ggRcd8yjbdKdMviCETe6DmlyO01pm5p0hPn3ZqiuXR24fOfcew9CN5SsKaHlXbd2HYy7aNyaEVqlIaelPEErKkWVMVqJU7QihJFMMFaco4sYO0JIwatqhbq3fT-7LBrdAx68hb534w7raQpemxbPHrd-8DsYXQQ8twkC0-rRJQNOzARhdhCxb_Dk-8MAwRlseh_BZiaF4Rq0xY3XQ7xCZ43uI1z_6iX6fHr82Lxk2_fn183DNjNcyjmDXGhhJMicVxZqo6kuSyG5NbTmomjqsoE8B5oLpnnBuKzBWkhAUdWNSHqJbpfcdN7XHuKsOr8PY1qpGGdUlqySIlHlQpngYwzQqCm4QYeDokQde1Wd-utVHXtVS6_JeL8YIf3w7SCoRMBowLoAZlbWu_8ifgCbRIaH</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Gebhart, Thomas M.J.</creator><creator>Jehnichen, Dieter</creator><creator>Koschichow, Roman</creator><creator>Müller, Michael</creator><creator>Göbel, Michael</creator><creator>Geske, Vinzenz</creator><creator>Stegelmann, Michael</creator><creator>Gude, Maik</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5677-8311</orcidid><orcidid>https://orcid.org/0000-0003-3624-3242</orcidid></search><sort><creationdate>201912</creationdate><title>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</title><author>Gebhart, Thomas M.J. ; Jehnichen, Dieter ; Koschichow, Roman ; Müller, Michael ; Göbel, Michael ; Geske, Vinzenz ; Stegelmann, Michael ; Gude, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e47a7c8e8439debca1a66783dc1b375fb6fe44e1472a35238bedde78359bf7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed-cell foam</topic><topic>Compressive properties</topic><topic>Computed tomography</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Homogenisation</topic><topic>Laguerre tessellation</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multi-scale modelling</topic><topic>Numerical prediction</topic><topic>Optical microscopy</topic><topic>Physical properties</topic><topic>Plastic foam</topic><topic>Statistical properties/methods</topic><topic>Stress state</topic><topic>Tensile strength</topic><topic>Tessellation</topic><topic>Test procedures</topic><topic>Wall thickness</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhart, Thomas M.J.</creatorcontrib><creatorcontrib>Jehnichen, Dieter</creatorcontrib><creatorcontrib>Koschichow, Roman</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Göbel, Michael</creatorcontrib><creatorcontrib>Geske, Vinzenz</creatorcontrib><creatorcontrib>Stegelmann, Michael</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhart, Thomas M.J.</au><au>Jehnichen, Dieter</au><au>Koschichow, Roman</au><au>Müller, Michael</au><au>Göbel, Michael</au><au>Geske, Vinzenz</au><au>Stegelmann, Michael</au><au>Gude, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams</atitle><jtitle>International journal of engineering science</jtitle><date>2019-12</date><risdate>2019</risdate><volume>145</volume><spage>103168</spage><pages>103168-</pages><artnum>103168</artnum><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>The complex mechanical deformation behaviour of closed-cell foams is governed by morphological and physical properties such as cell structure and crystallinity. In this study, the micro-, meso- and macroscopic scale of commercially available bead foam was analysed. Statistical distribution of the cell structure including cell size, wall thickness and shape was determined using optical microscopy and micro computed-tomography. Local crystallinity was investigated by DSC scans and X-ray scattering. The results confirm the important influence of the multi-step manufacturing process on the physical properties of bead foams. Mesoscopic and macroscopic numerical analyses of the mechanical behaviour of polymeric closed-cell bead foams are performed. With regard to the manufacturing influence on local physical properties of bead foams, the suggested approach takes into account the density and crystallinity-specific material properties and the generation of associated material cards, using virtual test methods. To represent the mesoscopic foam morphology considered here, statistical volume elements (SVE) are generated using the Laguerre tessellation method. Crystallinity-dependent base material properties are used in SVE material cards to investigate tensile and compressive behaviour. For validation of the suggested approach, four-point bending tests are conducted on macroscopic scale and compared with the numerically predicted results. The paper shows the advanced forecast capability of locally resolved modelling of closed-cell bead foam structures and underlines the huge potential of the multi-scale modelling approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.103168</doi><orcidid>https://orcid.org/0000-0001-5677-8311</orcidid><orcidid>https://orcid.org/0000-0003-3624-3242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2019-12, Vol.145, p.103168, Article 103168
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_journals_2321862987
source Elsevier ScienceDirect Journals Complete
subjects Closed-cell foam
Compressive properties
Computed tomography
Crystal structure
Crystallinity
Homogenisation
Laguerre tessellation
Material properties
Mechanical properties
Morphology
Multi-scale modelling
Numerical prediction
Optical microscopy
Physical properties
Plastic foam
Statistical properties/methods
Stress state
Tensile strength
Tessellation
Test procedures
Wall thickness
X-ray scattering
title Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modelling%20approach%20to%20homogenise%20the%20mechanical%20properties%20of%20polymeric%20closed-cell%20bead%20foams&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Gebhart,%20Thomas%20M.J.&rft.date=2019-12&rft.volume=145&rft.spage=103168&rft.pages=103168-&rft.artnum=103168&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.103168&rft_dat=%3Cproquest_cross%3E2321862987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321862987&rft_id=info:pmid/&rft_els_id=S0020722518327009&rfr_iscdi=true