Fractional matching preclusion for arrangement graphs

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu (2017) recently introduced the concept of fractional matching preclusion number. The fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-11, Vol.270, p.181-189
Hauptverfasser: Ma, Tianlong, Mao, Yaping, Cheng, Eddie, Wang, Jinling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu (2017) recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of G is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of G is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the FMP number and the FSMP number for arrangement graphs. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.07.014