The role of decoupling factor on sugarcane crop water use under tropical conditions

The expansion of sugarcane crop to regions with lower water supply in Brazil has increased the importance of correct estimation of crop water requirements. Currently, the irrigation management is generally done using the crop coefficient (Kc) based on the FAO 56 bulletin. Kc is used to determine the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental agriculture 2019-12, Vol.55 (6), p.913-923
Hauptverfasser: Nassif, Daniel Silveira Pinto, da Costa, Leandro Garcia, Vianna, Murilo dos Santos, dos Santos Carvalho, Kassio, Marin, Fabio Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 6
container_start_page 913
container_title Experimental agriculture
container_volume 55
creator Nassif, Daniel Silveira Pinto
da Costa, Leandro Garcia
Vianna, Murilo dos Santos
dos Santos Carvalho, Kassio
Marin, Fabio Ricardo
description The expansion of sugarcane crop to regions with lower water supply in Brazil has increased the importance of correct estimation of crop water requirements. Currently, the irrigation management is generally done using the crop coefficient (Kc) based on the FAO 56 bulletin. Kc is used to determine the potential water demand of the crop for a given period of time and is considered constant for each crop stage. However, some recent studies have shown that Kc can be significantly variable under different evapotranspiration (ETo) rates. This paper aimed to analyse sugarcane water consumption at different scales: plant (sap flow measurements by energy balance method); canopy (Bowen ratio energy balance method); and plant–atmosphere coupling (infrared gas analyser) to reduce the uncertainties on the irrigation practices. Measurements were taken at two experimental sites, where a modern Brazilian cultivar CTC 12 was grown under drip irrigation and an old main Brazilian cultivar (RB867515) was grown under sprinkler irrigation by a central pivot. The mean crop evapotranspiration (ETc) values by the Bowen ratio energy balance method were 2.92 and 3.68 mm d−1 for RB867515 and CTC 12, respectively, resulting in a mean Kc of 0.99 at the full vegetative growth stage. Kc values were dependent on ETo and varied between 0.2 and 1.7 for both cultivars. This occurred in a crop coupled to the atmosphere (Ω = 0.37) and was the same found in other coupled crops such as coffee and citrus. In conclusion, the sugarcane Kc for southeast Brazil presented temporal variability due to coupling conditions according to reference evapotranspiration, and this should be considered in irrigation management.
doi_str_mv 10.1017/S0014479718000480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321520215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0014479718000480</cupid><sourcerecordid>2321520215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ae6d3488b2df188f2f2869d3ca26c952fac5875e20ee5a61a2d76b0fc58b24d3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaJgXf0B3gKeq_lqmx5l8QsWPGzvJU0mtUs3qUmL-O_NsgsexMt8vJn35jEI3VJyTwmtHraEUCGquqKSECIkOUMZFWWdCyHoOcoO4_wwv0RXMe5Sy4nkGdo2H4CDHwF7iw1ov0zj4HpslZ59wN7huPQqaOUA6-An_KVmCHiJgBdnUjUncNBqxNo7M8yDd_EaXVg1Rrg55RVqnp-a9Wu-eX95Wz9ucs1pNecKSsOFlB0zlkppmWWyrA3XipW6LliyUMiqAEYAClVSxUxVdsQmtGPC8BW6O8pOwX8uEOd255fg0sWWcUYLRlJIW_S4ldzHGMC2Uxj2Kny3lLSH17V_Xpc4_MRR-y4Mpodf6f9ZP5h5cJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321520215</pqid></control><display><type>article</type><title>The role of decoupling factor on sugarcane crop water use under tropical conditions</title><source>Cambridge University Press Journals Complete</source><creator>Nassif, Daniel Silveira Pinto ; da Costa, Leandro Garcia ; Vianna, Murilo dos Santos ; dos Santos Carvalho, Kassio ; Marin, Fabio Ricardo</creator><creatorcontrib>Nassif, Daniel Silveira Pinto ; da Costa, Leandro Garcia ; Vianna, Murilo dos Santos ; dos Santos Carvalho, Kassio ; Marin, Fabio Ricardo</creatorcontrib><description>The expansion of sugarcane crop to regions with lower water supply in Brazil has increased the importance of correct estimation of crop water requirements. Currently, the irrigation management is generally done using the crop coefficient (Kc) based on the FAO 56 bulletin. Kc is used to determine the potential water demand of the crop for a given period of time and is considered constant for each crop stage. However, some recent studies have shown that Kc can be significantly variable under different evapotranspiration (ETo) rates. This paper aimed to analyse sugarcane water consumption at different scales: plant (sap flow measurements by energy balance method); canopy (Bowen ratio energy balance method); and plant–atmosphere coupling (infrared gas analyser) to reduce the uncertainties on the irrigation practices. Measurements were taken at two experimental sites, where a modern Brazilian cultivar CTC 12 was grown under drip irrigation and an old main Brazilian cultivar (RB867515) was grown under sprinkler irrigation by a central pivot. The mean crop evapotranspiration (ETc) values by the Bowen ratio energy balance method were 2.92 and 3.68 mm d−1 for RB867515 and CTC 12, respectively, resulting in a mean Kc of 0.99 at the full vegetative growth stage. Kc values were dependent on ETo and varied between 0.2 and 1.7 for both cultivars. This occurred in a crop coupled to the atmosphere (Ω = 0.37) and was the same found in other coupled crops such as coffee and citrus. In conclusion, the sugarcane Kc for southeast Brazil presented temporal variability due to coupling conditions according to reference evapotranspiration, and this should be considered in irrigation management.</description><identifier>ISSN: 0014-4797</identifier><identifier>EISSN: 1469-4441</identifier><identifier>DOI: 10.1017/S0014479718000480</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Atmosphere ; Balances (scales) ; Bowen ratio ; Coffee ; Coupling ; Crops ; Cultivars ; Decoupling ; Drip irrigation ; Energy balance ; Environmental conditions ; Evapotranspiration ; Flow measurement ; Gas analyzers ; Growth stage ; Heat ; Infrared analysis ; Irrigation ; Irrigation practices ; Irrigation water ; Measurement techniques ; Rain ; Sensors ; Sprinkler irrigation ; Sugarcane ; Water consumption ; Water demand ; Water management ; Water requirements ; Water supply ; Water use ; Weather ; Wind</subject><ispartof>Experimental agriculture, 2019-12, Vol.55 (6), p.913-923</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ae6d3488b2df188f2f2869d3ca26c952fac5875e20ee5a61a2d76b0fc58b24d3</citedby><cites>FETCH-LOGICAL-c317t-ae6d3488b2df188f2f2869d3ca26c952fac5875e20ee5a61a2d76b0fc58b24d3</cites><orcidid>0000-0003-1139-4589 ; 0000-0002-4062-8877 ; 0000-0002-9780-1781 ; 0000-0003-1184-3479 ; 0000-0003-1265-9032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0014479718000480/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Nassif, Daniel Silveira Pinto</creatorcontrib><creatorcontrib>da Costa, Leandro Garcia</creatorcontrib><creatorcontrib>Vianna, Murilo dos Santos</creatorcontrib><creatorcontrib>dos Santos Carvalho, Kassio</creatorcontrib><creatorcontrib>Marin, Fabio Ricardo</creatorcontrib><title>The role of decoupling factor on sugarcane crop water use under tropical conditions</title><title>Experimental agriculture</title><addtitle>Ex. Agric</addtitle><description>The expansion of sugarcane crop to regions with lower water supply in Brazil has increased the importance of correct estimation of crop water requirements. Currently, the irrigation management is generally done using the crop coefficient (Kc) based on the FAO 56 bulletin. Kc is used to determine the potential water demand of the crop for a given period of time and is considered constant for each crop stage. However, some recent studies have shown that Kc can be significantly variable under different evapotranspiration (ETo) rates. This paper aimed to analyse sugarcane water consumption at different scales: plant (sap flow measurements by energy balance method); canopy (Bowen ratio energy balance method); and plant–atmosphere coupling (infrared gas analyser) to reduce the uncertainties on the irrigation practices. Measurements were taken at two experimental sites, where a modern Brazilian cultivar CTC 12 was grown under drip irrigation and an old main Brazilian cultivar (RB867515) was grown under sprinkler irrigation by a central pivot. The mean crop evapotranspiration (ETc) values by the Bowen ratio energy balance method were 2.92 and 3.68 mm d−1 for RB867515 and CTC 12, respectively, resulting in a mean Kc of 0.99 at the full vegetative growth stage. Kc values were dependent on ETo and varied between 0.2 and 1.7 for both cultivars. This occurred in a crop coupled to the atmosphere (Ω = 0.37) and was the same found in other coupled crops such as coffee and citrus. In conclusion, the sugarcane Kc for southeast Brazil presented temporal variability due to coupling conditions according to reference evapotranspiration, and this should be considered in irrigation management.</description><subject>Atmosphere</subject><subject>Balances (scales)</subject><subject>Bowen ratio</subject><subject>Coffee</subject><subject>Coupling</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Decoupling</subject><subject>Drip irrigation</subject><subject>Energy balance</subject><subject>Environmental conditions</subject><subject>Evapotranspiration</subject><subject>Flow measurement</subject><subject>Gas analyzers</subject><subject>Growth stage</subject><subject>Heat</subject><subject>Infrared analysis</subject><subject>Irrigation</subject><subject>Irrigation practices</subject><subject>Irrigation water</subject><subject>Measurement techniques</subject><subject>Rain</subject><subject>Sensors</subject><subject>Sprinkler irrigation</subject><subject>Sugarcane</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water management</subject><subject>Water requirements</subject><subject>Water supply</subject><subject>Water use</subject><subject>Weather</subject><subject>Wind</subject><issn>0014-4797</issn><issn>1469-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaJgXf0B3gKeq_lqmx5l8QsWPGzvJU0mtUs3qUmL-O_NsgsexMt8vJn35jEI3VJyTwmtHraEUCGquqKSECIkOUMZFWWdCyHoOcoO4_wwv0RXMe5Sy4nkGdo2H4CDHwF7iw1ov0zj4HpslZ59wN7huPQqaOUA6-An_KVmCHiJgBdnUjUncNBqxNo7M8yDd_EaXVg1Rrg55RVqnp-a9Wu-eX95Wz9ucs1pNecKSsOFlB0zlkppmWWyrA3XipW6LliyUMiqAEYAClVSxUxVdsQmtGPC8BW6O8pOwX8uEOd255fg0sWWcUYLRlJIW_S4ldzHGMC2Uxj2Kny3lLSH17V_Xpc4_MRR-y4Mpodf6f9ZP5h5cJ4</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Nassif, Daniel Silveira Pinto</creator><creator>da Costa, Leandro Garcia</creator><creator>Vianna, Murilo dos Santos</creator><creator>dos Santos Carvalho, Kassio</creator><creator>Marin, Fabio Ricardo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1139-4589</orcidid><orcidid>https://orcid.org/0000-0002-4062-8877</orcidid><orcidid>https://orcid.org/0000-0002-9780-1781</orcidid><orcidid>https://orcid.org/0000-0003-1184-3479</orcidid><orcidid>https://orcid.org/0000-0003-1265-9032</orcidid></search><sort><creationdate>201912</creationdate><title>The role of decoupling factor on sugarcane crop water use under tropical conditions</title><author>Nassif, Daniel Silveira Pinto ; da Costa, Leandro Garcia ; Vianna, Murilo dos Santos ; dos Santos Carvalho, Kassio ; Marin, Fabio Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ae6d3488b2df188f2f2869d3ca26c952fac5875e20ee5a61a2d76b0fc58b24d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmosphere</topic><topic>Balances (scales)</topic><topic>Bowen ratio</topic><topic>Coffee</topic><topic>Coupling</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Decoupling</topic><topic>Drip irrigation</topic><topic>Energy balance</topic><topic>Environmental conditions</topic><topic>Evapotranspiration</topic><topic>Flow measurement</topic><topic>Gas analyzers</topic><topic>Growth stage</topic><topic>Heat</topic><topic>Infrared analysis</topic><topic>Irrigation</topic><topic>Irrigation practices</topic><topic>Irrigation water</topic><topic>Measurement techniques</topic><topic>Rain</topic><topic>Sensors</topic><topic>Sprinkler irrigation</topic><topic>Sugarcane</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water management</topic><topic>Water requirements</topic><topic>Water supply</topic><topic>Water use</topic><topic>Weather</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nassif, Daniel Silveira Pinto</creatorcontrib><creatorcontrib>da Costa, Leandro Garcia</creatorcontrib><creatorcontrib>Vianna, Murilo dos Santos</creatorcontrib><creatorcontrib>dos Santos Carvalho, Kassio</creatorcontrib><creatorcontrib>Marin, Fabio Ricardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Experimental agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nassif, Daniel Silveira Pinto</au><au>da Costa, Leandro Garcia</au><au>Vianna, Murilo dos Santos</au><au>dos Santos Carvalho, Kassio</au><au>Marin, Fabio Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of decoupling factor on sugarcane crop water use under tropical conditions</atitle><jtitle>Experimental agriculture</jtitle><addtitle>Ex. Agric</addtitle><date>2019-12</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>0014-4797</issn><eissn>1469-4441</eissn><abstract>The expansion of sugarcane crop to regions with lower water supply in Brazil has increased the importance of correct estimation of crop water requirements. Currently, the irrigation management is generally done using the crop coefficient (Kc) based on the FAO 56 bulletin. Kc is used to determine the potential water demand of the crop for a given period of time and is considered constant for each crop stage. However, some recent studies have shown that Kc can be significantly variable under different evapotranspiration (ETo) rates. This paper aimed to analyse sugarcane water consumption at different scales: plant (sap flow measurements by energy balance method); canopy (Bowen ratio energy balance method); and plant–atmosphere coupling (infrared gas analyser) to reduce the uncertainties on the irrigation practices. Measurements were taken at two experimental sites, where a modern Brazilian cultivar CTC 12 was grown under drip irrigation and an old main Brazilian cultivar (RB867515) was grown under sprinkler irrigation by a central pivot. The mean crop evapotranspiration (ETc) values by the Bowen ratio energy balance method were 2.92 and 3.68 mm d−1 for RB867515 and CTC 12, respectively, resulting in a mean Kc of 0.99 at the full vegetative growth stage. Kc values were dependent on ETo and varied between 0.2 and 1.7 for both cultivars. This occurred in a crop coupled to the atmosphere (Ω = 0.37) and was the same found in other coupled crops such as coffee and citrus. In conclusion, the sugarcane Kc for southeast Brazil presented temporal variability due to coupling conditions according to reference evapotranspiration, and this should be considered in irrigation management.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0014479718000480</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1139-4589</orcidid><orcidid>https://orcid.org/0000-0002-4062-8877</orcidid><orcidid>https://orcid.org/0000-0002-9780-1781</orcidid><orcidid>https://orcid.org/0000-0003-1184-3479</orcidid><orcidid>https://orcid.org/0000-0003-1265-9032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4797
ispartof Experimental agriculture, 2019-12, Vol.55 (6), p.913-923
issn 0014-4797
1469-4441
language eng
recordid cdi_proquest_journals_2321520215
source Cambridge University Press Journals Complete
subjects Atmosphere
Balances (scales)
Bowen ratio
Coffee
Coupling
Crops
Cultivars
Decoupling
Drip irrigation
Energy balance
Environmental conditions
Evapotranspiration
Flow measurement
Gas analyzers
Growth stage
Heat
Infrared analysis
Irrigation
Irrigation practices
Irrigation water
Measurement techniques
Rain
Sensors
Sprinkler irrigation
Sugarcane
Water consumption
Water demand
Water management
Water requirements
Water supply
Water use
Weather
Wind
title The role of decoupling factor on sugarcane crop water use under tropical conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20decoupling%20factor%20on%20sugarcane%20crop%20water%20use%20under%20tropical%20conditions&rft.jtitle=Experimental%20agriculture&rft.au=Nassif,%20Daniel%20Silveira%20Pinto&rft.date=2019-12&rft.volume=55&rft.issue=6&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=0014-4797&rft.eissn=1469-4441&rft_id=info:doi/10.1017/S0014479718000480&rft_dat=%3Cproquest_cross%3E2321520215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321520215&rft_id=info:pmid/&rft_cupid=10_1017_S0014479718000480&rfr_iscdi=true