Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma

The pancreatic cancer microenvironment is crucial in cancer development, progression and drug resistance. Cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2020-01, Vol.469, p.217-227
Hauptverfasser: Hiroshima, Yukihiko, Kasajima, Rika, Kimura, Yayoi, Komura, Daisuke, Ishikawa, Shumpei, Ichikawa, Yasushi, Bouvet, Michael, Yamamoto, Naoto, Oshima, Takashi, Morinaga, Soichiro, Singh, Shree Ram, Hoffman, Robert M., Endo, Itaru, Miyagi, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 217
container_title Cancer letters
container_volume 469
creator Hiroshima, Yukihiko
Kasajima, Rika
Kimura, Yayoi
Komura, Daisuke
Ishikawa, Shumpei
Ichikawa, Yasushi
Bouvet, Michael
Yamamoto, Naoto
Oshima, Takashi
Morinaga, Soichiro
Singh, Shree Ram
Hoffman, Robert M.
Endo, Itaru
Miyagi, Yohei
description The pancreatic cancer microenvironment is crucial in cancer development, progression and drug resistance. Cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze the whole cancer-stromal interactome. Here we studied 14 resected pancreatic cancer specimens (8 pancreatic adenocarcinoma (PDAC) patients as a cancer group and 6 intraductal papillary-mucinous adenoma (IPMA) patients as a control). Shotgun proteomics of the stromal lesion dissected with laser captured microdissection (LCM) was performed, and identified 102 differentially expressed proteins in pancreatic cancer stroma. Next, we obtained gene expression data in human pancreatic cancer and normal pancreatic tissue from The Cancer Genome Atlas database (n = 169) and The Genotype-Tissue Expression database (n = 197), and identified 1435 genes, which were differentially expressed in pancreatic cancer cells. To identify relevant and druggable cancer-stromal-interaction targets, we applied these datasets to our in-house ligand-receptor database. Finally, we identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients. Furthermore, we examined FN1 and ITGA3 protein expression in pancreatic cancer tissues using tissue microarrays (TMAs) of 271 PDAC cases, and demonstrated that FN1-ITGA3 had unfavorable prognostic impact for PDAC patients. •Performed a shotgun proteomic analysis using dissected stromal areas of PDAC tissues.•Identified differentially-expressed (DE) proteins in PDAC stroma.•Identified crucial and potentially druggable cancer-stromal interactions in PDAC.•Identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients.•FN1-ITGA3 and FN1-ITGA5 have unfavorable prognostic impact for PDAC patients.
doi_str_mv 10.1016/j.canlet.2019.10.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321383421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383519305348</els_id><sourcerecordid>2321383421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d0c009260ffdea26cc31e092f3c4b6f2ef8a23f0e47e4e8c55f634d1350ef2ba3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3l0I0jxBUU3ug5p5qZkmE5qkhb6700d125uuCf3nJt8hNwyKBmw-r4vjR4HTCUHtshSCYKdkRlrG140ixbOyQwEyEK0orokVzH2AFDJppqRzbs_4ECTDhtMkboOx-Ssw46uj9SNCTdBp9zlBQZDEVPwWz383gRtkt8i1aMejtFF6i3d5bGAOjlDdY7yRgfjxmy5JhdWDxFv_s45-Xp--ly-FquPl7fl46owUohUdGAAFrwGazvUvDZGMMyCFUaua8vRtpoLCygblNiaqrK1kB0TFaDlay3m5G7K3QX_vceYVO_3Ib8wKi44ywRkrnMipykTfIwBrdoFt9XhqBioE1LVqwmpOiE9qRlptj1MNsw_ODgMKhqHGUznApqkOu_-D_gB9SuD1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321383421</pqid></control><display><type>article</type><title>Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma</title><source>Elsevier ScienceDirect Journals</source><creator>Hiroshima, Yukihiko ; Kasajima, Rika ; Kimura, Yayoi ; Komura, Daisuke ; Ishikawa, Shumpei ; Ichikawa, Yasushi ; Bouvet, Michael ; Yamamoto, Naoto ; Oshima, Takashi ; Morinaga, Soichiro ; Singh, Shree Ram ; Hoffman, Robert M. ; Endo, Itaru ; Miyagi, Yohei</creator><creatorcontrib>Hiroshima, Yukihiko ; Kasajima, Rika ; Kimura, Yayoi ; Komura, Daisuke ; Ishikawa, Shumpei ; Ichikawa, Yasushi ; Bouvet, Michael ; Yamamoto, Naoto ; Oshima, Takashi ; Morinaga, Soichiro ; Singh, Shree Ram ; Hoffman, Robert M. ; Endo, Itaru ; Miyagi, Yohei</creatorcontrib><description>The pancreatic cancer microenvironment is crucial in cancer development, progression and drug resistance. Cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze the whole cancer-stromal interactome. Here we studied 14 resected pancreatic cancer specimens (8 pancreatic adenocarcinoma (PDAC) patients as a cancer group and 6 intraductal papillary-mucinous adenoma (IPMA) patients as a control). Shotgun proteomics of the stromal lesion dissected with laser captured microdissection (LCM) was performed, and identified 102 differentially expressed proteins in pancreatic cancer stroma. Next, we obtained gene expression data in human pancreatic cancer and normal pancreatic tissue from The Cancer Genome Atlas database (n = 169) and The Genotype-Tissue Expression database (n = 197), and identified 1435 genes, which were differentially expressed in pancreatic cancer cells. To identify relevant and druggable cancer-stromal-interaction targets, we applied these datasets to our in-house ligand-receptor database. Finally, we identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients. Furthermore, we examined FN1 and ITGA3 protein expression in pancreatic cancer tissues using tissue microarrays (TMAs) of 271 PDAC cases, and demonstrated that FN1-ITGA3 had unfavorable prognostic impact for PDAC patients. •Performed a shotgun proteomic analysis using dissected stromal areas of PDAC tissues.•Identified differentially-expressed (DE) proteins in PDAC stroma.•Identified crucial and potentially druggable cancer-stromal interactions in PDAC.•Identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients.•FN1-ITGA3 and FN1-ITGA5 have unfavorable prognostic impact for PDAC patients.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2019.10.031</identifier><language>eng</language><publisher>Clare: Elsevier B.V</publisher><subject>Adenocarcinoma ; Adenoma ; Bioinformatics ; Cancer-stromal interaction ; Cell adhesion &amp; migration ; Collagen ; DNA microarrays ; Drug resistance ; Ethanol ; Gene expression ; Genes ; Genomes ; Genotypes ; Ligands ; Lymphatic system ; Medical prognosis ; Melanoma ; Metastasis ; Pancreatic cancer ; Pancreatitis ; Proteomics ; Stroma ; Tissues ; Tumors</subject><ispartof>Cancer letters, 2020-01, Vol.469, p.217-227</ispartof><rights>2019</rights><rights>Copyright Elsevier Limited Jan 28, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d0c009260ffdea26cc31e092f3c4b6f2ef8a23f0e47e4e8c55f634d1350ef2ba3</citedby><cites>FETCH-LOGICAL-c433t-d0c009260ffdea26cc31e092f3c4b6f2ef8a23f0e47e4e8c55f634d1350ef2ba3</cites><orcidid>0000-0001-6545-583X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304383519305348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hiroshima, Yukihiko</creatorcontrib><creatorcontrib>Kasajima, Rika</creatorcontrib><creatorcontrib>Kimura, Yayoi</creatorcontrib><creatorcontrib>Komura, Daisuke</creatorcontrib><creatorcontrib>Ishikawa, Shumpei</creatorcontrib><creatorcontrib>Ichikawa, Yasushi</creatorcontrib><creatorcontrib>Bouvet, Michael</creatorcontrib><creatorcontrib>Yamamoto, Naoto</creatorcontrib><creatorcontrib>Oshima, Takashi</creatorcontrib><creatorcontrib>Morinaga, Soichiro</creatorcontrib><creatorcontrib>Singh, Shree Ram</creatorcontrib><creatorcontrib>Hoffman, Robert M.</creatorcontrib><creatorcontrib>Endo, Itaru</creatorcontrib><creatorcontrib>Miyagi, Yohei</creatorcontrib><title>Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma</title><title>Cancer letters</title><description>The pancreatic cancer microenvironment is crucial in cancer development, progression and drug resistance. Cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze the whole cancer-stromal interactome. Here we studied 14 resected pancreatic cancer specimens (8 pancreatic adenocarcinoma (PDAC) patients as a cancer group and 6 intraductal papillary-mucinous adenoma (IPMA) patients as a control). Shotgun proteomics of the stromal lesion dissected with laser captured microdissection (LCM) was performed, and identified 102 differentially expressed proteins in pancreatic cancer stroma. Next, we obtained gene expression data in human pancreatic cancer and normal pancreatic tissue from The Cancer Genome Atlas database (n = 169) and The Genotype-Tissue Expression database (n = 197), and identified 1435 genes, which were differentially expressed in pancreatic cancer cells. To identify relevant and druggable cancer-stromal-interaction targets, we applied these datasets to our in-house ligand-receptor database. Finally, we identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients. Furthermore, we examined FN1 and ITGA3 protein expression in pancreatic cancer tissues using tissue microarrays (TMAs) of 271 PDAC cases, and demonstrated that FN1-ITGA3 had unfavorable prognostic impact for PDAC patients. •Performed a shotgun proteomic analysis using dissected stromal areas of PDAC tissues.•Identified differentially-expressed (DE) proteins in PDAC stroma.•Identified crucial and potentially druggable cancer-stromal interactions in PDAC.•Identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients.•FN1-ITGA3 and FN1-ITGA5 have unfavorable prognostic impact for PDAC patients.</description><subject>Adenocarcinoma</subject><subject>Adenoma</subject><subject>Bioinformatics</subject><subject>Cancer-stromal interaction</subject><subject>Cell adhesion &amp; migration</subject><subject>Collagen</subject><subject>DNA microarrays</subject><subject>Drug resistance</subject><subject>Ethanol</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Ligands</subject><subject>Lymphatic system</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metastasis</subject><subject>Pancreatic cancer</subject><subject>Pancreatitis</subject><subject>Proteomics</subject><subject>Stroma</subject><subject>Tissues</subject><subject>Tumors</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3l0I0jxBUU3ug5p5qZkmE5qkhb6700d125uuCf3nJt8hNwyKBmw-r4vjR4HTCUHtshSCYKdkRlrG140ixbOyQwEyEK0orokVzH2AFDJppqRzbs_4ECTDhtMkboOx-Ssw46uj9SNCTdBp9zlBQZDEVPwWz383gRtkt8i1aMejtFF6i3d5bGAOjlDdY7yRgfjxmy5JhdWDxFv_s45-Xp--ly-FquPl7fl46owUohUdGAAFrwGazvUvDZGMMyCFUaua8vRtpoLCygblNiaqrK1kB0TFaDlay3m5G7K3QX_vceYVO_3Ib8wKi44ywRkrnMipykTfIwBrdoFt9XhqBioE1LVqwmpOiE9qRlptj1MNsw_ODgMKhqHGUznApqkOu_-D_gB9SuD1w</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Hiroshima, Yukihiko</creator><creator>Kasajima, Rika</creator><creator>Kimura, Yayoi</creator><creator>Komura, Daisuke</creator><creator>Ishikawa, Shumpei</creator><creator>Ichikawa, Yasushi</creator><creator>Bouvet, Michael</creator><creator>Yamamoto, Naoto</creator><creator>Oshima, Takashi</creator><creator>Morinaga, Soichiro</creator><creator>Singh, Shree Ram</creator><creator>Hoffman, Robert M.</creator><creator>Endo, Itaru</creator><creator>Miyagi, Yohei</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><orcidid>https://orcid.org/0000-0001-6545-583X</orcidid></search><sort><creationdate>20200128</creationdate><title>Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma</title><author>Hiroshima, Yukihiko ; Kasajima, Rika ; Kimura, Yayoi ; Komura, Daisuke ; Ishikawa, Shumpei ; Ichikawa, Yasushi ; Bouvet, Michael ; Yamamoto, Naoto ; Oshima, Takashi ; Morinaga, Soichiro ; Singh, Shree Ram ; Hoffman, Robert M. ; Endo, Itaru ; Miyagi, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d0c009260ffdea26cc31e092f3c4b6f2ef8a23f0e47e4e8c55f634d1350ef2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenocarcinoma</topic><topic>Adenoma</topic><topic>Bioinformatics</topic><topic>Cancer-stromal interaction</topic><topic>Cell adhesion &amp; migration</topic><topic>Collagen</topic><topic>DNA microarrays</topic><topic>Drug resistance</topic><topic>Ethanol</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Ligands</topic><topic>Lymphatic system</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metastasis</topic><topic>Pancreatic cancer</topic><topic>Pancreatitis</topic><topic>Proteomics</topic><topic>Stroma</topic><topic>Tissues</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiroshima, Yukihiko</creatorcontrib><creatorcontrib>Kasajima, Rika</creatorcontrib><creatorcontrib>Kimura, Yayoi</creatorcontrib><creatorcontrib>Komura, Daisuke</creatorcontrib><creatorcontrib>Ishikawa, Shumpei</creatorcontrib><creatorcontrib>Ichikawa, Yasushi</creatorcontrib><creatorcontrib>Bouvet, Michael</creatorcontrib><creatorcontrib>Yamamoto, Naoto</creatorcontrib><creatorcontrib>Oshima, Takashi</creatorcontrib><creatorcontrib>Morinaga, Soichiro</creatorcontrib><creatorcontrib>Singh, Shree Ram</creatorcontrib><creatorcontrib>Hoffman, Robert M.</creatorcontrib><creatorcontrib>Endo, Itaru</creatorcontrib><creatorcontrib>Miyagi, Yohei</creatorcontrib><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiroshima, Yukihiko</au><au>Kasajima, Rika</au><au>Kimura, Yayoi</au><au>Komura, Daisuke</au><au>Ishikawa, Shumpei</au><au>Ichikawa, Yasushi</au><au>Bouvet, Michael</au><au>Yamamoto, Naoto</au><au>Oshima, Takashi</au><au>Morinaga, Soichiro</au><au>Singh, Shree Ram</au><au>Hoffman, Robert M.</au><au>Endo, Itaru</au><au>Miyagi, Yohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma</atitle><jtitle>Cancer letters</jtitle><date>2020-01-28</date><risdate>2020</risdate><volume>469</volume><spage>217</spage><epage>227</epage><pages>217-227</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>The pancreatic cancer microenvironment is crucial in cancer development, progression and drug resistance. Cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze the whole cancer-stromal interactome. Here we studied 14 resected pancreatic cancer specimens (8 pancreatic adenocarcinoma (PDAC) patients as a cancer group and 6 intraductal papillary-mucinous adenoma (IPMA) patients as a control). Shotgun proteomics of the stromal lesion dissected with laser captured microdissection (LCM) was performed, and identified 102 differentially expressed proteins in pancreatic cancer stroma. Next, we obtained gene expression data in human pancreatic cancer and normal pancreatic tissue from The Cancer Genome Atlas database (n = 169) and The Genotype-Tissue Expression database (n = 197), and identified 1435 genes, which were differentially expressed in pancreatic cancer cells. To identify relevant and druggable cancer-stromal-interaction targets, we applied these datasets to our in-house ligand-receptor database. Finally, we identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients. Furthermore, we examined FN1 and ITGA3 protein expression in pancreatic cancer tissues using tissue microarrays (TMAs) of 271 PDAC cases, and demonstrated that FN1-ITGA3 had unfavorable prognostic impact for PDAC patients. •Performed a shotgun proteomic analysis using dissected stromal areas of PDAC tissues.•Identified differentially-expressed (DE) proteins in PDAC stroma.•Identified crucial and potentially druggable cancer-stromal interactions in PDAC.•Identified 9 key genes and 8 key cancer-stromal-interaction targets for PDAC patients.•FN1-ITGA3 and FN1-ITGA5 have unfavorable prognostic impact for PDAC patients.</abstract><cop>Clare</cop><pub>Elsevier B.V</pub><doi>10.1016/j.canlet.2019.10.031</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6545-583X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2020-01, Vol.469, p.217-227
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_journals_2321383421
source Elsevier ScienceDirect Journals
subjects Adenocarcinoma
Adenoma
Bioinformatics
Cancer-stromal interaction
Cell adhesion & migration
Collagen
DNA microarrays
Drug resistance
Ethanol
Gene expression
Genes
Genomes
Genotypes
Ligands
Lymphatic system
Medical prognosis
Melanoma
Metastasis
Pancreatic cancer
Pancreatitis
Proteomics
Stroma
Tissues
Tumors
title Novel targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20targets%20identified%20by%20integrated%20cancer-stromal%20interactome%20analysis%20of%20pancreatic%20adenocarcinoma&rft.jtitle=Cancer%20letters&rft.au=Hiroshima,%20Yukihiko&rft.date=2020-01-28&rft.volume=469&rft.spage=217&rft.epage=227&rft.pages=217-227&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2019.10.031&rft_dat=%3Cproquest_cross%3E2321383421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321383421&rft_id=info:pmid/&rft_els_id=S0304383519305348&rfr_iscdi=true