Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property

A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2020-02, Vol.93 (2), p.268-298
1. Verfasser: Safe, Martín D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 2
container_start_page 268
container_title Journal of graph theory
container_volume 93
creator Safe, Martín D.
description A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.
doi_str_mv 10.1002/jgt.22486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321347333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321347333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8fOj5eoggKqxKasLceZtKnSONgOqGzgCJyRk2AStqxGevO9N5qH0CUlM0pIPN9t_CyOeZ4eoQklIosIpfkxmhCW8kiQmJ-iM-d2JMgJySfoY7FVVmkPtn5XvjYtVm2Jm7oFZb8_v3y9B1yCBz3sTIX3dVvvVYNN4bztB9lhb7A2rVavEDzW9CFiY1W3dUOa3wLWtdV9M2SaFhzurOnA-sM5OqlU4-Dib07R893tenEfrZ6WD4ubVaQZi9OIJyRjWZLkhImcMU6ZFiQvCqKFEhpSXXGWZSUrQVGgWaK5yIEJIaqyVEVwTNHVmBsOv_TgvNyZ3rbhpIxZTBnPGPulrkdKW-OchUp2NnxrD5IS-duvDP3Kod_Azkf2rW7g8D8oH5fr0fED3ESBkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321347333</pqid></control><display><type>article</type><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Safe, Martín D.</creator><creatorcontrib>Safe, Martín D.</creatorcontrib><description>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22486</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Apexes ; Circularity ; circular‐arc graphs ; circular‐ones property ; concave‐round graphs ; Enumeration ; forbidden induced subgraphs ; forbidden submatrices ; Graph theory ; Graphs ; Mathematical analysis ; Matrix methods ; Obstructions</subject><ispartof>Journal of graph theory, 2020-02, Vol.93 (2), p.268-298</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</citedby><cites>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</cites><orcidid>0000-0002-5405-7331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Safe, Martín D.</creatorcontrib><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><title>Journal of graph theory</title><description>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</description><subject>Apexes</subject><subject>Circularity</subject><subject>circular‐arc graphs</subject><subject>circular‐ones property</subject><subject>concave‐round graphs</subject><subject>Enumeration</subject><subject>forbidden induced subgraphs</subject><subject>forbidden submatrices</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Obstructions</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8fOj5eoggKqxKasLceZtKnSONgOqGzgCJyRk2AStqxGevO9N5qH0CUlM0pIPN9t_CyOeZ4eoQklIosIpfkxmhCW8kiQmJ-iM-d2JMgJySfoY7FVVmkPtn5XvjYtVm2Jm7oFZb8_v3y9B1yCBz3sTIX3dVvvVYNN4bztB9lhb7A2rVavEDzW9CFiY1W3dUOa3wLWtdV9M2SaFhzurOnA-sM5OqlU4-Dib07R893tenEfrZ6WD4ubVaQZi9OIJyRjWZLkhImcMU6ZFiQvCqKFEhpSXXGWZSUrQVGgWaK5yIEJIaqyVEVwTNHVmBsOv_TgvNyZ3rbhpIxZTBnPGPulrkdKW-OchUp2NnxrD5IS-duvDP3Kod_Azkf2rW7g8D8oH5fr0fED3ESBkw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Safe, Martín D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5405-7331</orcidid></search><sort><creationdate>202002</creationdate><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><author>Safe, Martín D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Circularity</topic><topic>circular‐arc graphs</topic><topic>circular‐ones property</topic><topic>concave‐round graphs</topic><topic>Enumeration</topic><topic>forbidden induced subgraphs</topic><topic>forbidden submatrices</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Obstructions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safe, Martín D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safe, Martín D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</atitle><jtitle>Journal of graph theory</jtitle><date>2020-02</date><risdate>2020</risdate><volume>93</volume><issue>2</issue><spage>268</spage><epage>298</epage><pages>268-298</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22486</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5405-7331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2020-02, Vol.93 (2), p.268-298
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2321347333
source Wiley Online Library Journals Frontfile Complete
subjects Apexes
Circularity
circular‐arc graphs
circular‐ones property
concave‐round graphs
Enumeration
forbidden induced subgraphs
forbidden submatrices
Graph theory
Graphs
Mathematical analysis
Matrix methods
Obstructions
title Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20linear%E2%80%90time%20detection%20of%20minimal%20obstructions%20to%20concave%E2%80%90round%20graphs%20and%20the%20circular%E2%80%90ones%20property&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Safe,%20Mart%C3%ADn%20D.&rft.date=2020-02&rft.volume=93&rft.issue=2&rft.spage=268&rft.epage=298&rft.pages=268-298&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22486&rft_dat=%3Cproquest_cross%3E2321347333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321347333&rft_id=info:pmid/&rfr_iscdi=true