Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property
A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2020-02, Vol.93 (2), p.268-298 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 2 |
container_start_page | 268 |
container_title | Journal of graph theory |
container_volume | 93 |
creator | Safe, Martín D. |
description | A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs. |
doi_str_mv | 10.1002/jgt.22486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321347333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321347333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8fOj5eoggKqxKasLceZtKnSONgOqGzgCJyRk2AStqxGevO9N5qH0CUlM0pIPN9t_CyOeZ4eoQklIosIpfkxmhCW8kiQmJ-iM-d2JMgJySfoY7FVVmkPtn5XvjYtVm2Jm7oFZb8_v3y9B1yCBz3sTIX3dVvvVYNN4bztB9lhb7A2rVavEDzW9CFiY1W3dUOa3wLWtdV9M2SaFhzurOnA-sM5OqlU4-Dib07R893tenEfrZ6WD4ubVaQZi9OIJyRjWZLkhImcMU6ZFiQvCqKFEhpSXXGWZSUrQVGgWaK5yIEJIaqyVEVwTNHVmBsOv_TgvNyZ3rbhpIxZTBnPGPulrkdKW-OchUp2NnxrD5IS-duvDP3Kod_Azkf2rW7g8D8oH5fr0fED3ESBkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321347333</pqid></control><display><type>article</type><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Safe, Martín D.</creator><creatorcontrib>Safe, Martín D.</creatorcontrib><description>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22486</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Apexes ; Circularity ; circular‐arc graphs ; circular‐ones property ; concave‐round graphs ; Enumeration ; forbidden induced subgraphs ; forbidden submatrices ; Graph theory ; Graphs ; Mathematical analysis ; Matrix methods ; Obstructions</subject><ispartof>Journal of graph theory, 2020-02, Vol.93 (2), p.268-298</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</citedby><cites>FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</cites><orcidid>0000-0002-5405-7331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Safe, Martín D.</creatorcontrib><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><title>Journal of graph theory</title><description>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</description><subject>Apexes</subject><subject>Circularity</subject><subject>circular‐arc graphs</subject><subject>circular‐ones property</subject><subject>concave‐round graphs</subject><subject>Enumeration</subject><subject>forbidden induced subgraphs</subject><subject>forbidden submatrices</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Obstructions</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIa8fOj5eoggKqxKasLceZtKnSONgOqGzgCJyRk2AStqxGevO9N5qH0CUlM0pIPN9t_CyOeZ4eoQklIosIpfkxmhCW8kiQmJ-iM-d2JMgJySfoY7FVVmkPtn5XvjYtVm2Jm7oFZb8_v3y9B1yCBz3sTIX3dVvvVYNN4bztB9lhb7A2rVavEDzW9CFiY1W3dUOa3wLWtdV9M2SaFhzurOnA-sM5OqlU4-Dib07R893tenEfrZ6WD4ubVaQZi9OIJyRjWZLkhImcMU6ZFiQvCqKFEhpSXXGWZSUrQVGgWaK5yIEJIaqyVEVwTNHVmBsOv_TgvNyZ3rbhpIxZTBnPGPulrkdKW-OchUp2NnxrD5IS-duvDP3Kod_Azkf2rW7g8D8oH5fr0fED3ESBkw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Safe, Martín D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5405-7331</orcidid></search><sort><creationdate>202002</creationdate><title>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</title><author>Safe, Martín D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-450737558039833413c908bb0c9a9ce6cf4377d3dea1e175c498e3999fddab833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Circularity</topic><topic>circular‐arc graphs</topic><topic>circular‐ones property</topic><topic>concave‐round graphs</topic><topic>Enumeration</topic><topic>forbidden induced subgraphs</topic><topic>forbidden submatrices</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Obstructions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safe, Martín D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safe, Martín D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property</atitle><jtitle>Journal of graph theory</jtitle><date>2020-02</date><risdate>2020</risdate><volume>93</volume><issue>2</issue><spage>268</spage><epage>298</epage><pages>268-298</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A graph is concave‐round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave‐round graphs, solving a problem posed by Bang‐Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave‐round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular‐ones property for rows and for the circular‐ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular‐arc graphs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22486</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5405-7331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2020-02, Vol.93 (2), p.268-298 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2321347333 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Apexes Circularity circular‐arc graphs circular‐ones property concave‐round graphs Enumeration forbidden induced subgraphs forbidden submatrices Graph theory Graphs Mathematical analysis Matrix methods Obstructions |
title | Characterization and linear‐time detection of minimal obstructions to concave‐round graphs and the circular‐ones property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20linear%E2%80%90time%20detection%20of%20minimal%20obstructions%20to%20concave%E2%80%90round%20graphs%20and%20the%20circular%E2%80%90ones%20property&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Safe,%20Mart%C3%ADn%20D.&rft.date=2020-02&rft.volume=93&rft.issue=2&rft.spage=268&rft.epage=298&rft.pages=268-298&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22486&rft_dat=%3Cproquest_cross%3E2321347333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321347333&rft_id=info:pmid/&rfr_iscdi=true |