Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells
Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The curren...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2019-12, Vol.216 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 216 |
creator | Xiong, Shenghu Yuan, Xiao Yang, Yunxia Zhang, Jiefeng Tong, Hua Liu, Cui Ye, Xiaojun Li, Shengyong Luo, Lan Wang, Xianhao |
description | Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface.
Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells. |
doi_str_mv | 10.1002/pssa.201900480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321341191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321341191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrl2_uyxiiggFVEpZbac2AFXJg52IpSNR-AZeRJSFcHIdO9wznd1P4QuCSwIAL3uQpALCoQDJAyO0IywjEZZTPjx7w5wis5C2E1ImuRkhp4fZO1dqF1nalz2gxqxa3ExeK_bHm-9bEPnfI83sn_BpsUr79r-6-OzNErjYtpl3QfsGlz4MfTSWtNqXBpr6immdFZ6XGhrwzk6aaQN-uJnztHT6mZb3EXrx9v7YrmO6pjkEGUUVAoqyRNgvAFCU8UqymmmWU4VcBnXihHCWcrzSsXQ5GnGGlUlSSqzitF4jq4OuZ13b4MOvdi5wbfTSUFjSuJkkslELQ7U_vfgdSM6b16lHwUBsS9T7MsUv2VOAj8I78bq8R9abMpy-ed-AxD6eS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321341191</pqid></control><display><type>article</type><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><source>Access via Wiley Online Library</source><creator>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</creator><creatorcontrib>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</creatorcontrib><description>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface.
Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900480</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>contact resistivities ; contact-end voltages ; Crystal structure ; Crystallinity ; Crystallites ; Current distribution ; current transport paths ; Electrical measurement ; Electrical resistivity ; Electrodes ; Emitters ; Metallizing ; Photovoltaic cells ; Silicon ; Silicon substrates ; Silver ; solar cell metallization ; Solar cells ; transfer lengths ; Transmission lines</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-12, Vol.216 (23), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</citedby><cites>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</cites><orcidid>0000-0002-7487-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiong, Shenghu</creatorcontrib><creatorcontrib>Yuan, Xiao</creatorcontrib><creatorcontrib>Yang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Jiefeng</creatorcontrib><creatorcontrib>Tong, Hua</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Li, Shengyong</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><creatorcontrib>Wang, Xianhao</creatorcontrib><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><title>Physica status solidi. A, Applications and materials science</title><description>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface.
Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</description><subject>contact resistivities</subject><subject>contact-end voltages</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Current distribution</subject><subject>current transport paths</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Emitters</subject><subject>Metallizing</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>solar cell metallization</subject><subject>Solar cells</subject><subject>transfer lengths</subject><subject>Transmission lines</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrl2_uyxiiggFVEpZbac2AFXJg52IpSNR-AZeRJSFcHIdO9wznd1P4QuCSwIAL3uQpALCoQDJAyO0IywjEZZTPjx7w5wis5C2E1ImuRkhp4fZO1dqF1nalz2gxqxa3ExeK_bHm-9bEPnfI83sn_BpsUr79r-6-OzNErjYtpl3QfsGlz4MfTSWtNqXBpr6immdFZ6XGhrwzk6aaQN-uJnztHT6mZb3EXrx9v7YrmO6pjkEGUUVAoqyRNgvAFCU8UqymmmWU4VcBnXihHCWcrzSsXQ5GnGGlUlSSqzitF4jq4OuZ13b4MOvdi5wbfTSUFjSuJkkslELQ7U_vfgdSM6b16lHwUBsS9T7MsUv2VOAj8I78bq8R9abMpy-ed-AxD6eS8</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Xiong, Shenghu</creator><creator>Yuan, Xiao</creator><creator>Yang, Yunxia</creator><creator>Zhang, Jiefeng</creator><creator>Tong, Hua</creator><creator>Liu, Cui</creator><creator>Ye, Xiaojun</creator><creator>Li, Shengyong</creator><creator>Luo, Lan</creator><creator>Wang, Xianhao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7487-2739</orcidid></search><sort><creationdate>201912</creationdate><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><author>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>contact resistivities</topic><topic>contact-end voltages</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Current distribution</topic><topic>current transport paths</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Emitters</topic><topic>Metallizing</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>solar cell metallization</topic><topic>Solar cells</topic><topic>transfer lengths</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Shenghu</creatorcontrib><creatorcontrib>Yuan, Xiao</creatorcontrib><creatorcontrib>Yang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Jiefeng</creatorcontrib><creatorcontrib>Tong, Hua</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Li, Shengyong</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><creatorcontrib>Wang, Xianhao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Shenghu</au><au>Yuan, Xiao</au><au>Yang, Yunxia</au><au>Zhang, Jiefeng</au><au>Tong, Hua</au><au>Liu, Cui</au><au>Ye, Xiaojun</au><au>Li, Shengyong</au><au>Luo, Lan</au><au>Wang, Xianhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-12</date><risdate>2019</risdate><volume>216</volume><issue>23</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface.
Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900480</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7487-2739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2019-12, Vol.216 (23), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2321341191 |
source | Access via Wiley Online Library |
subjects | contact resistivities contact-end voltages Crystal structure Crystallinity Crystallites Current distribution current transport paths Electrical measurement Electrical resistivity Electrodes Emitters Metallizing Photovoltaic cells Silicon Silicon substrates Silver solar cell metallization Solar cells transfer lengths Transmission lines |
title | Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20Study%20on%20Current%20Transport%20Path%20in%20Front%E2%80%90Side%20Contacts%20of%20Crystalline%20Silicon%20Solar%20Cells&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Xiong,%20Shenghu&rft.date=2019-12&rft.volume=216&rft.issue=23&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900480&rft_dat=%3Cproquest_cross%3E2321341191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321341191&rft_id=info:pmid/&rfr_iscdi=true |