Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells

Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2019-12, Vol.216 (23), p.n/a
Hauptverfasser: Xiong, Shenghu, Yuan, Xiao, Yang, Yunxia, Zhang, Jiefeng, Tong, Hua, Liu, Cui, Ye, Xiaojun, Li, Shengyong, Luo, Lan, Wang, Xianhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 216
creator Xiong, Shenghu
Yuan, Xiao
Yang, Yunxia
Zhang, Jiefeng
Tong, Hua
Liu, Cui
Ye, Xiaojun
Li, Shengyong
Luo, Lan
Wang, Xianhao
description Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface. Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.
doi_str_mv 10.1002/pssa.201900480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321341191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321341191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrl2_uyxiiggFVEpZbac2AFXJg52IpSNR-AZeRJSFcHIdO9wznd1P4QuCSwIAL3uQpALCoQDJAyO0IywjEZZTPjx7w5wis5C2E1ImuRkhp4fZO1dqF1nalz2gxqxa3ExeK_bHm-9bEPnfI83sn_BpsUr79r-6-OzNErjYtpl3QfsGlz4MfTSWtNqXBpr6immdFZ6XGhrwzk6aaQN-uJnztHT6mZb3EXrx9v7YrmO6pjkEGUUVAoqyRNgvAFCU8UqymmmWU4VcBnXihHCWcrzSsXQ5GnGGlUlSSqzitF4jq4OuZ13b4MOvdi5wbfTSUFjSuJkkslELQ7U_vfgdSM6b16lHwUBsS9T7MsUv2VOAj8I78bq8R9abMpy-ed-AxD6eS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321341191</pqid></control><display><type>article</type><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><source>Access via Wiley Online Library</source><creator>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</creator><creatorcontrib>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</creatorcontrib><description>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface. Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900480</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>contact resistivities ; contact-end voltages ; Crystal structure ; Crystallinity ; Crystallites ; Current distribution ; current transport paths ; Electrical measurement ; Electrical resistivity ; Electrodes ; Emitters ; Metallizing ; Photovoltaic cells ; Silicon ; Silicon substrates ; Silver ; solar cell metallization ; Solar cells ; transfer lengths ; Transmission lines</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-12, Vol.216 (23), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</citedby><cites>FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</cites><orcidid>0000-0002-7487-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiong, Shenghu</creatorcontrib><creatorcontrib>Yuan, Xiao</creatorcontrib><creatorcontrib>Yang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Jiefeng</creatorcontrib><creatorcontrib>Tong, Hua</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Li, Shengyong</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><creatorcontrib>Wang, Xianhao</creatorcontrib><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><title>Physica status solidi. A, Applications and materials science</title><description>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface. Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</description><subject>contact resistivities</subject><subject>contact-end voltages</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Current distribution</subject><subject>current transport paths</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Emitters</subject><subject>Metallizing</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>solar cell metallization</subject><subject>Solar cells</subject><subject>transfer lengths</subject><subject>Transmission lines</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrl2_uyxiiggFVEpZbac2AFXJg52IpSNR-AZeRJSFcHIdO9wznd1P4QuCSwIAL3uQpALCoQDJAyO0IywjEZZTPjx7w5wis5C2E1ImuRkhp4fZO1dqF1nalz2gxqxa3ExeK_bHm-9bEPnfI83sn_BpsUr79r-6-OzNErjYtpl3QfsGlz4MfTSWtNqXBpr6immdFZ6XGhrwzk6aaQN-uJnztHT6mZb3EXrx9v7YrmO6pjkEGUUVAoqyRNgvAFCU8UqymmmWU4VcBnXihHCWcrzSsXQ5GnGGlUlSSqzitF4jq4OuZ13b4MOvdi5wbfTSUFjSuJkkslELQ7U_vfgdSM6b16lHwUBsS9T7MsUv2VOAj8I78bq8R9abMpy-ed-AxD6eS8</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Xiong, Shenghu</creator><creator>Yuan, Xiao</creator><creator>Yang, Yunxia</creator><creator>Zhang, Jiefeng</creator><creator>Tong, Hua</creator><creator>Liu, Cui</creator><creator>Ye, Xiaojun</creator><creator>Li, Shengyong</creator><creator>Luo, Lan</creator><creator>Wang, Xianhao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7487-2739</orcidid></search><sort><creationdate>201912</creationdate><title>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</title><author>Xiong, Shenghu ; Yuan, Xiao ; Yang, Yunxia ; Zhang, Jiefeng ; Tong, Hua ; Liu, Cui ; Ye, Xiaojun ; Li, Shengyong ; Luo, Lan ; Wang, Xianhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-620d50d474089f0125d8b2926e872d09a3cd81198597bd30f7568fdb445a6b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>contact resistivities</topic><topic>contact-end voltages</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Current distribution</topic><topic>current transport paths</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Emitters</topic><topic>Metallizing</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>solar cell metallization</topic><topic>Solar cells</topic><topic>transfer lengths</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Shenghu</creatorcontrib><creatorcontrib>Yuan, Xiao</creatorcontrib><creatorcontrib>Yang, Yunxia</creatorcontrib><creatorcontrib>Zhang, Jiefeng</creatorcontrib><creatorcontrib>Tong, Hua</creatorcontrib><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Ye, Xiaojun</creatorcontrib><creatorcontrib>Li, Shengyong</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><creatorcontrib>Wang, Xianhao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Shenghu</au><au>Yuan, Xiao</au><au>Yang, Yunxia</au><au>Zhang, Jiefeng</au><au>Tong, Hua</au><au>Liu, Cui</au><au>Ye, Xiaojun</au><au>Li, Shengyong</au><au>Luo, Lan</au><au>Wang, Xianhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-12</date><risdate>2019</risdate><volume>216</volume><issue>23</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Double rectangular transmission line model and contact‐end voltage measurement are used to study the variation in sheet resistance and current transfer length of the contact interface between the front‐side electrode and the emitter of crystalline silicon solar cells during metallization. The current distribution and its relationship with the sheet resistances of the electrode, contact interface, and emitter are given at the macrolevel. The model shows that the current flows transversely for ≈50–500 μm in the highly conductive interface with a sheet resistance in the range of 0.5–5 Ω □−1 beneath the designed electrodes. The I–V curves beneath the front silver pad sintered at lower, optimum, and over‐fired temperatures are always linear. However, they are nonlinear between the front‐side and rear‐side electrodes of the double phosphorus‐doped N‐type silicon substrates, which suggests that the contact type changes from Ohmic to Schottky. The experimental results imply that the photogenerated current on the emitter surface is mainly transferred transversely via the crystallites embedded in the shallow highly doped silicon layer rather than the deeper lightly doped contact area at the contact interface. Current transport path and distribution of Ag–Si contact interface of crystalline silicon solar cells are determined using a mathematical and physical model at the macrolevel. The model provides the relation between the current distribution and the sheet resistances of the contact interface, electrode, and emitter. It improves the performance of front silver paste for silicon solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900480</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7487-2739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2019-12, Vol.216 (23), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2321341191
source Access via Wiley Online Library
subjects contact resistivities
contact-end voltages
Crystal structure
Crystallinity
Crystallites
Current distribution
current transport paths
Electrical measurement
Electrical resistivity
Electrodes
Emitters
Metallizing
Photovoltaic cells
Silicon
Silicon substrates
Silver
solar cell metallization
Solar cells
transfer lengths
Transmission lines
title Macroscopic Study on Current Transport Path in Front‐Side Contacts of Crystalline Silicon Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20Study%20on%20Current%20Transport%20Path%20in%20Front%E2%80%90Side%20Contacts%20of%20Crystalline%20Silicon%20Solar%20Cells&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Xiong,%20Shenghu&rft.date=2019-12&rft.volume=216&rft.issue=23&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900480&rft_dat=%3Cproquest_cross%3E2321341191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321341191&rft_id=info:pmid/&rfr_iscdi=true