gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r

There has been rapid development in tools for multivariate analysis based on fully specified statistical models or ‘joint models’. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2019-12, Vol.10 (12), p.2173-2182
Hauptverfasser: Niku, Jenni, Hui, Francis K. C., Taskinen, Sara, Warton, David I., Goslee, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2182
container_issue 12
container_start_page 2173
container_title Methods in ecology and evolution
container_volume 10
creator Niku, Jenni
Hui, Francis K. C.
Taskinen, Sara
Warton, David I.
Goslee, Sarah
description There has been rapid development in tools for multivariate analysis based on fully specified statistical models or ‘joint models’. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not practical for large datasets. The r package gllvm offers relatively fast methods to fit GLLVMs via maximum likelihood, along with tools for model checking, visualization and inference. The main advantage of the package over other implementations is speed, for example, being two orders of magnitude faster, and capable of handling thousands of response variables. These advances come from using variational approximations to simplify the likelihood expression to be maximized, automatic differentiation software for model‐fitting (via the TMB package) and careful choice of initial values for parameters. Examples are used to illustrate the main features and functionality of the package, such as constrained or unconstrained ordination, including functional traits in ‘fourth corner’ models, and (if the number of environmental coefficients is not large) make inferences about environmental associations.
doi_str_mv 10.1111/2041-210X.13303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321228070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321228070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-81045b53f35f7a55a080bf74a3ae29a4cf8d5a1facb516daab0430d0bd8cb4853</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGrPXgOet83Hprv1JqW1QsWLgrcw2SQ1Jbtbk92W-uvddkW8OZcZhucZmBehW0rGtKsJIylNGCXvY8o54Rdo8Lu5_DNfo1GMW9IVz2eEpQO02Xi_L-_xEmKDoQJ_jC7i2uKy9Y3bQ3DQGAyqrTRUhcEaGsAH13zgjalMAO--jMbeVQYC9h1bNfhsKW9wWWvjI3YVDjfoyoKPZvTTh-htuXidr5L1y-PT_GGdFFxkPMkpSYUS3HJhMxACSE6UzVLgYNgM0sLmWgC1UChBpxpAkZQTTZTOC5Xmgg_RXX93F-rP1sRGbus2dH9FyTijjOUkIx016aki1DEGY-UuuBLCUVIiT4HKU2TyFJk8B9oZ0944OG-O_-HyebHgvfgNqEh4qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321228070</pqid></control><display><type>article</type><title>gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Niku, Jenni ; Hui, Francis K. C. ; Taskinen, Sara ; Warton, David I. ; Goslee, Sarah</creator><contributor>Goslee, Sarah</contributor><creatorcontrib>Niku, Jenni ; Hui, Francis K. C. ; Taskinen, Sara ; Warton, David I. ; Goslee, Sarah ; Goslee, Sarah</creatorcontrib><description>There has been rapid development in tools for multivariate analysis based on fully specified statistical models or ‘joint models’. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not practical for large datasets. The r package gllvm offers relatively fast methods to fit GLLVMs via maximum likelihood, along with tools for model checking, visualization and inference. The main advantage of the package over other implementations is speed, for example, being two orders of magnitude faster, and capable of handling thousands of response variables. These advances come from using variational approximations to simplify the likelihood expression to be maximized, automatic differentiation software for model‐fitting (via the TMB package) and careful choice of initial values for parameters. Examples are used to illustrate the main features and functionality of the package, such as constrained or unconstrained ordination, including functional traits in ‘fourth corner’ models, and (if the number of environmental coefficients is not large) make inferences about environmental associations.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13303</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>abundance data ; Computer programs ; Environmental organizations ; generalized linear latent variable models ; high‐dimensional data ; joint modelling ; Mathematical models ; maximum likelihood ; Multivariate analysis ; Ordination ; Software ; species interactions ; Statistical analysis ; Statistical models</subject><ispartof>Methods in ecology and evolution, 2019-12, Vol.10 (12), p.2173-2182</ispartof><rights>2019 The Authors. Methods in Ecology and Evolution © 2019 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2019 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-81045b53f35f7a55a080bf74a3ae29a4cf8d5a1facb516daab0430d0bd8cb4853</citedby><cites>FETCH-LOGICAL-c3573-81045b53f35f7a55a080bf74a3ae29a4cf8d5a1facb516daab0430d0bd8cb4853</cites><orcidid>0000-0002-7992-2598 ; 0000-0001-9441-6645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13303$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13303$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>Goslee, Sarah</contributor><creatorcontrib>Niku, Jenni</creatorcontrib><creatorcontrib>Hui, Francis K. C.</creatorcontrib><creatorcontrib>Taskinen, Sara</creatorcontrib><creatorcontrib>Warton, David I.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><title>gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r</title><title>Methods in ecology and evolution</title><description>There has been rapid development in tools for multivariate analysis based on fully specified statistical models or ‘joint models’. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not practical for large datasets. The r package gllvm offers relatively fast methods to fit GLLVMs via maximum likelihood, along with tools for model checking, visualization and inference. The main advantage of the package over other implementations is speed, for example, being two orders of magnitude faster, and capable of handling thousands of response variables. These advances come from using variational approximations to simplify the likelihood expression to be maximized, automatic differentiation software for model‐fitting (via the TMB package) and careful choice of initial values for parameters. Examples are used to illustrate the main features and functionality of the package, such as constrained or unconstrained ordination, including functional traits in ‘fourth corner’ models, and (if the number of environmental coefficients is not large) make inferences about environmental associations.</description><subject>abundance data</subject><subject>Computer programs</subject><subject>Environmental organizations</subject><subject>generalized linear latent variable models</subject><subject>high‐dimensional data</subject><subject>joint modelling</subject><subject>Mathematical models</subject><subject>maximum likelihood</subject><subject>Multivariate analysis</subject><subject>Ordination</subject><subject>Software</subject><subject>species interactions</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGrPXgOet83Hprv1JqW1QsWLgrcw2SQ1Jbtbk92W-uvddkW8OZcZhucZmBehW0rGtKsJIylNGCXvY8o54Rdo8Lu5_DNfo1GMW9IVz2eEpQO02Xi_L-_xEmKDoQJ_jC7i2uKy9Y3bQ3DQGAyqrTRUhcEaGsAH13zgjalMAO--jMbeVQYC9h1bNfhsKW9wWWvjI3YVDjfoyoKPZvTTh-htuXidr5L1y-PT_GGdFFxkPMkpSYUS3HJhMxACSE6UzVLgYNgM0sLmWgC1UChBpxpAkZQTTZTOC5Xmgg_RXX93F-rP1sRGbus2dH9FyTijjOUkIx016aki1DEGY-UuuBLCUVIiT4HKU2TyFJk8B9oZ0944OG-O_-HyebHgvfgNqEh4qg</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Niku, Jenni</creator><creator>Hui, Francis K. C.</creator><creator>Taskinen, Sara</creator><creator>Warton, David I.</creator><creator>Goslee, Sarah</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-7992-2598</orcidid><orcidid>https://orcid.org/0000-0001-9441-6645</orcidid></search><sort><creationdate>201912</creationdate><title>gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r</title><author>Niku, Jenni ; Hui, Francis K. C. ; Taskinen, Sara ; Warton, David I. ; Goslee, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-81045b53f35f7a55a080bf74a3ae29a4cf8d5a1facb516daab0430d0bd8cb4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>abundance data</topic><topic>Computer programs</topic><topic>Environmental organizations</topic><topic>generalized linear latent variable models</topic><topic>high‐dimensional data</topic><topic>joint modelling</topic><topic>Mathematical models</topic><topic>maximum likelihood</topic><topic>Multivariate analysis</topic><topic>Ordination</topic><topic>Software</topic><topic>species interactions</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niku, Jenni</creatorcontrib><creatorcontrib>Hui, Francis K. C.</creatorcontrib><creatorcontrib>Taskinen, Sara</creatorcontrib><creatorcontrib>Warton, David I.</creatorcontrib><creatorcontrib>Goslee, Sarah</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niku, Jenni</au><au>Hui, Francis K. C.</au><au>Taskinen, Sara</au><au>Warton, David I.</au><au>Goslee, Sarah</au><au>Goslee, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2019-12</date><risdate>2019</risdate><volume>10</volume><issue>12</issue><spage>2173</spage><epage>2182</epage><pages>2173-2182</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>There has been rapid development in tools for multivariate analysis based on fully specified statistical models or ‘joint models’. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not practical for large datasets. The r package gllvm offers relatively fast methods to fit GLLVMs via maximum likelihood, along with tools for model checking, visualization and inference. The main advantage of the package over other implementations is speed, for example, being two orders of magnitude faster, and capable of handling thousands of response variables. These advances come from using variational approximations to simplify the likelihood expression to be maximized, automatic differentiation software for model‐fitting (via the TMB package) and careful choice of initial values for parameters. Examples are used to illustrate the main features and functionality of the package, such as constrained or unconstrained ordination, including functional traits in ‘fourth corner’ models, and (if the number of environmental coefficients is not large) make inferences about environmental associations.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.13303</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7992-2598</orcidid><orcidid>https://orcid.org/0000-0001-9441-6645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2019-12, Vol.10 (12), p.2173-2182
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_journals_2321228070
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects abundance data
Computer programs
Environmental organizations
generalized linear latent variable models
high‐dimensional data
joint modelling
Mathematical models
maximum likelihood
Multivariate analysis
Ordination
Software
species interactions
Statistical analysis
Statistical models
title gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=gllvm:%20Fast%20analysis%20of%20multivariate%20abundance%20data%20with%20generalized%20linear%20latent%20variable%20models%20in%20r&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Niku,%20Jenni&rft.date=2019-12&rft.volume=10&rft.issue=12&rft.spage=2173&rft.epage=2182&rft.pages=2173-2182&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13303&rft_dat=%3Cproquest_cross%3E2321228070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321228070&rft_id=info:pmid/&rfr_iscdi=true