Dynamic finite element modeling and fatigue damage analysis of thermite welds

Railway track comprises of continuous welded rail mounted with rail clips on sleepers integrated to a ballast track form system. Modeling the rail structure with thermite weld subjected to the complex dynamic loadings is a challenging problem. Fatigue failures at the head‐to‐web, web‐to‐foot, and fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2020-01, Vol.43 (1), p.119-136
Hauptverfasser: Liu, Z., Shi, X., Tsang, K.S., Hoh, H.J., Pang, J.H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 119
container_title Fatigue & fracture of engineering materials & structures
container_volume 43
creator Liu, Z.
Shi, X.
Tsang, K.S.
Hoh, H.J.
Pang, J.H.L.
description Railway track comprises of continuous welded rail mounted with rail clips on sleepers integrated to a ballast track form system. Modeling the rail structure with thermite weld subjected to the complex dynamic loadings is a challenging problem. Fatigue failures at the head‐to‐web, web‐to‐foot, and foot regions of weld collar are investigated. In this paper, a combined method of multibody system dynamic analysis and dynamic finite element analysis was used. A train roll‐in experiment was conducted at a train depot test track to validate modeling results predicted at the strain gauge location. Three critical plane‐based multiaxial fatigue criterions incorporated with a smallest enclosing circle algorithm were implemented in Python code to study the fatigue behavior at weld collar. Parametric studies were also conducted to investigate the effects of track component materials, track curvature, and train velocity. This approach provides a method for predicting the failures of thermite welded joints in railway tracks.
doi_str_mv 10.1111/ffe.13091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321199776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321199776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-26fbd9fd026b48e376b1ae9a9d98cdb8ae59c74f56400baedda36f69553c134e3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1o4TOz6i0gJSEReQuFlOvC6u8lPsRFXeHpdwZS8rrb5ZzQxCt5QsaJyltbCgjEh6hmY04yRJuczP0awQOU9EXnxeoqsQ9oRQnjE2Q6-PY6sbV2HrWtcDhhoaaHvcdAZq1-6wbg22une7AbDRjd5BPOl6DC7gzuL-C3xzEh6hNuEaXVhdB7j523P0sVm_r56T7dvTy-phm1SpFDR6sqWR1pCUl1kBTPCSapBaGllUpiw05LISmc15RkipwRjNuI1BclZRlgGbo7vp78F33wOEXu27wUdbQaUspVRKIXik7ieq8l0IHqw6eNdoPypK1KktFdtSv21FdjmxR1fD-D-oNpv1pPgBhNtsAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321199776</pqid></control><display><type>article</type><title>Dynamic finite element modeling and fatigue damage analysis of thermite welds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Z. ; Shi, X. ; Tsang, K.S. ; Hoh, H.J. ; Pang, J.H.L.</creator><creatorcontrib>Liu, Z. ; Shi, X. ; Tsang, K.S. ; Hoh, H.J. ; Pang, J.H.L.</creatorcontrib><description>Railway track comprises of continuous welded rail mounted with rail clips on sleepers integrated to a ballast track form system. Modeling the rail structure with thermite weld subjected to the complex dynamic loadings is a challenging problem. Fatigue failures at the head‐to‐web, web‐to‐foot, and foot regions of weld collar are investigated. In this paper, a combined method of multibody system dynamic analysis and dynamic finite element analysis was used. A train roll‐in experiment was conducted at a train depot test track to validate modeling results predicted at the strain gauge location. Three critical plane‐based multiaxial fatigue criterions incorporated with a smallest enclosing circle algorithm were implemented in Python code to study the fatigue behavior at weld collar. Parametric studies were also conducted to investigate the effects of track component materials, track curvature, and train velocity. This approach provides a method for predicting the failures of thermite welded joints in railway tracks.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13091</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; critical plane process ; Damage assessment ; dynamic modeling approach ; Fatigue failure ; Finite element method ; Mathematical models ; Mechanical components ; Modelling ; multiaxial fatigue ; Multibody systems ; Railroad ties ; Railway tracks ; smallest enclosing circle ; Strain gauges ; Webs ; Welded joints ; wireless strain measurement</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2020-01, Vol.43 (1), p.119-136</ispartof><rights>2019 Wiley Publishing Ltd.</rights><rights>2020 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-26fbd9fd026b48e376b1ae9a9d98cdb8ae59c74f56400baedda36f69553c134e3</citedby><cites>FETCH-LOGICAL-c2971-26fbd9fd026b48e376b1ae9a9d98cdb8ae59c74f56400baedda36f69553c134e3</cites><orcidid>0000-0003-1225-1395 ; 0000-0002-3510-725X ; 0000-0002-5964-2273 ; 0000-0002-9337-6845 ; 0000-0002-7432-4054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Z.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Tsang, K.S.</creatorcontrib><creatorcontrib>Hoh, H.J.</creatorcontrib><creatorcontrib>Pang, J.H.L.</creatorcontrib><title>Dynamic finite element modeling and fatigue damage analysis of thermite welds</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Railway track comprises of continuous welded rail mounted with rail clips on sleepers integrated to a ballast track form system. Modeling the rail structure with thermite weld subjected to the complex dynamic loadings is a challenging problem. Fatigue failures at the head‐to‐web, web‐to‐foot, and foot regions of weld collar are investigated. In this paper, a combined method of multibody system dynamic analysis and dynamic finite element analysis was used. A train roll‐in experiment was conducted at a train depot test track to validate modeling results predicted at the strain gauge location. Three critical plane‐based multiaxial fatigue criterions incorporated with a smallest enclosing circle algorithm were implemented in Python code to study the fatigue behavior at weld collar. Parametric studies were also conducted to investigate the effects of track component materials, track curvature, and train velocity. This approach provides a method for predicting the failures of thermite welded joints in railway tracks.</description><subject>Algorithms</subject><subject>critical plane process</subject><subject>Damage assessment</subject><subject>dynamic modeling approach</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical components</subject><subject>Modelling</subject><subject>multiaxial fatigue</subject><subject>Multibody systems</subject><subject>Railroad ties</subject><subject>Railway tracks</subject><subject>smallest enclosing circle</subject><subject>Strain gauges</subject><subject>Webs</subject><subject>Welded joints</subject><subject>wireless strain measurement</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0sceKQ1o4TOz6i0gJSEReQuFlOvC6u8lPsRFXeHpdwZS8rrb5ZzQxCt5QsaJyltbCgjEh6hmY04yRJuczP0awQOU9EXnxeoqsQ9oRQnjE2Q6-PY6sbV2HrWtcDhhoaaHvcdAZq1-6wbg22une7AbDRjd5BPOl6DC7gzuL-C3xzEh6hNuEaXVhdB7j523P0sVm_r56T7dvTy-phm1SpFDR6sqWR1pCUl1kBTPCSapBaGllUpiw05LISmc15RkipwRjNuI1BclZRlgGbo7vp78F33wOEXu27wUdbQaUspVRKIXik7ieq8l0IHqw6eNdoPypK1KktFdtSv21FdjmxR1fD-D-oNpv1pPgBhNtsAw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Liu, Z.</creator><creator>Shi, X.</creator><creator>Tsang, K.S.</creator><creator>Hoh, H.J.</creator><creator>Pang, J.H.L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-1225-1395</orcidid><orcidid>https://orcid.org/0000-0002-3510-725X</orcidid><orcidid>https://orcid.org/0000-0002-5964-2273</orcidid><orcidid>https://orcid.org/0000-0002-9337-6845</orcidid><orcidid>https://orcid.org/0000-0002-7432-4054</orcidid></search><sort><creationdate>202001</creationdate><title>Dynamic finite element modeling and fatigue damage analysis of thermite welds</title><author>Liu, Z. ; Shi, X. ; Tsang, K.S. ; Hoh, H.J. ; Pang, J.H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-26fbd9fd026b48e376b1ae9a9d98cdb8ae59c74f56400baedda36f69553c134e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>critical plane process</topic><topic>Damage assessment</topic><topic>dynamic modeling approach</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical components</topic><topic>Modelling</topic><topic>multiaxial fatigue</topic><topic>Multibody systems</topic><topic>Railroad ties</topic><topic>Railway tracks</topic><topic>smallest enclosing circle</topic><topic>Strain gauges</topic><topic>Webs</topic><topic>Welded joints</topic><topic>wireless strain measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Z.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Tsang, K.S.</creatorcontrib><creatorcontrib>Hoh, H.J.</creatorcontrib><creatorcontrib>Pang, J.H.L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Z.</au><au>Shi, X.</au><au>Tsang, K.S.</au><au>Hoh, H.J.</au><au>Pang, J.H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic finite element modeling and fatigue damage analysis of thermite welds</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2020-01</date><risdate>2020</risdate><volume>43</volume><issue>1</issue><spage>119</spage><epage>136</epage><pages>119-136</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Railway track comprises of continuous welded rail mounted with rail clips on sleepers integrated to a ballast track form system. Modeling the rail structure with thermite weld subjected to the complex dynamic loadings is a challenging problem. Fatigue failures at the head‐to‐web, web‐to‐foot, and foot regions of weld collar are investigated. In this paper, a combined method of multibody system dynamic analysis and dynamic finite element analysis was used. A train roll‐in experiment was conducted at a train depot test track to validate modeling results predicted at the strain gauge location. Three critical plane‐based multiaxial fatigue criterions incorporated with a smallest enclosing circle algorithm were implemented in Python code to study the fatigue behavior at weld collar. Parametric studies were also conducted to investigate the effects of track component materials, track curvature, and train velocity. This approach provides a method for predicting the failures of thermite welded joints in railway tracks.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13091</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1225-1395</orcidid><orcidid>https://orcid.org/0000-0002-3510-725X</orcidid><orcidid>https://orcid.org/0000-0002-5964-2273</orcidid><orcidid>https://orcid.org/0000-0002-9337-6845</orcidid><orcidid>https://orcid.org/0000-0002-7432-4054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2020-01, Vol.43 (1), p.119-136
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2321199776
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
critical plane process
Damage assessment
dynamic modeling approach
Fatigue failure
Finite element method
Mathematical models
Mechanical components
Modelling
multiaxial fatigue
Multibody systems
Railroad ties
Railway tracks
smallest enclosing circle
Strain gauges
Webs
Welded joints
wireless strain measurement
title Dynamic finite element modeling and fatigue damage analysis of thermite welds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20finite%20element%20modeling%20and%20fatigue%20damage%20analysis%20of%20thermite%20welds&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Liu,%20Z.&rft.date=2020-01&rft.volume=43&rft.issue=1&rft.spage=119&rft.epage=136&rft.pages=119-136&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13091&rft_dat=%3Cproquest_cross%3E2321199776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321199776&rft_id=info:pmid/&rfr_iscdi=true