A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm

This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2020-01, Vol.35 (1), p.80-96
Hauptverfasser: Madadi, Bahman, Nes, Rob, Snelder, Maaike, Arem, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 80
container_title Computer-aided civil and infrastructure engineering
container_volume 35
creator Madadi, Bahman
Nes, Rob
Snelder, Maaike
Arem, Bart
description This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.
doi_str_mv 10.1111/mice.12498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321192856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321192856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqWw4QQjsUNKiRPXcdhVFT-VitjAOnLsSeuSxMVxWsoKcQLOyElwCWveYmYW37wZvSA4J9GIeF3VWuKIxDTjB8GAUJaGnLH00M9RloQZ4-lxcNK2q8iL0mQQfE6g0N8fXxVusILaKF-dAbN2utbvCNYIBQ26rbEvLZTGgoBav7nOIpgSatF0ogLRKBCdM7VwqEBZvdHN4homDeDGVJ3TphF2B5WRHm5RWLkEUS2M1W5ZnwZHpahaPPvrw-D59uZpeh_OH-9m08k8lAkf81CpQsgSFS0oQZJmnNEMx6WIBYkJKaNMMh7xQhSSMZXRghclpjJJmZQFRcWSYXDR-66tee2wdfnKdLbxJ_M48RZZzMd76rKnpDVta7HM11bX_vucRPk-43yfcf6bsYdJD291hbt_yPxhNr3pd34AozaCuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321192856</pqid></control><display><type>article</type><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</creator><creatorcontrib>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</creatorcontrib><description>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12498</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Evolutionary algorithms ; Optimization ; Penetration ; Roads ; Search algorithms ; Vehicles</subject><ispartof>Computer-aided civil and infrastructure engineering, 2020-01, Vol.35 (1), p.80-96</ispartof><rights>2019 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals, Inc. on behalf of Editor</rights><rights>2020 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</citedby><cites>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12498$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12498$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Madadi, Bahman</creatorcontrib><creatorcontrib>Nes, Rob</creatorcontrib><creatorcontrib>Snelder, Maaike</creatorcontrib><creatorcontrib>Arem, Bart</creatorcontrib><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Evolutionary algorithms</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Roads</subject><subject>Search algorithms</subject><subject>Vehicles</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE1OwzAQhSMEEqWw4QQjsUNKiRPXcdhVFT-VitjAOnLsSeuSxMVxWsoKcQLOyElwCWveYmYW37wZvSA4J9GIeF3VWuKIxDTjB8GAUJaGnLH00M9RloQZ4-lxcNK2q8iL0mQQfE6g0N8fXxVusILaKF-dAbN2utbvCNYIBQ26rbEvLZTGgoBav7nOIpgSatF0ogLRKBCdM7VwqEBZvdHN4homDeDGVJ3TphF2B5WRHm5RWLkEUS2M1W5ZnwZHpahaPPvrw-D59uZpeh_OH-9m08k8lAkf81CpQsgSFS0oQZJmnNEMx6WIBYkJKaNMMh7xQhSSMZXRghclpjJJmZQFRcWSYXDR-66tee2wdfnKdLbxJ_M48RZZzMd76rKnpDVta7HM11bX_vucRPk-43yfcf6bsYdJD291hbt_yPxhNr3pd34AozaCuQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Madadi, Bahman</creator><creator>Nes, Rob</creator><creator>Snelder, Maaike</creator><creator>Arem, Bart</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><author>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Evolutionary algorithms</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Roads</topic><topic>Search algorithms</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madadi, Bahman</creatorcontrib><creatorcontrib>Nes, Rob</creatorcontrib><creatorcontrib>Snelder, Maaike</creatorcontrib><creatorcontrib>Arem, Bart</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madadi, Bahman</au><au>Nes, Rob</au><au>Snelder, Maaike</au><au>Arem, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2020-01</date><risdate>2020</risdate><volume>35</volume><issue>1</issue><spage>80</spage><epage>96</epage><pages>80-96</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12498</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2020-01, Vol.35 (1), p.80-96
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2321192856
source Wiley Online Library - AutoHoldings Journals
subjects Algorithms
Automation
Evolutionary algorithms
Optimization
Penetration
Roads
Search algorithms
Vehicles
title A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi%E2%80%90level%20model%20to%20optimize%20road%20networks%20for%20a%20mixture%20of%20manual%20and%20automated%20driving:%20An%20evolutionary%20local%20search%20algorithm&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Madadi,%20Bahman&rft.date=2020-01&rft.volume=35&rft.issue=1&rft.spage=80&rft.epage=96&rft.pages=80-96&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12498&rft_dat=%3Cproquest_cross%3E2321192856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321192856&rft_id=info:pmid/&rfr_iscdi=true