A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm
This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2020-01, Vol.35 (1), p.80-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 35 |
creator | Madadi, Bahman Nes, Rob Snelder, Maaike Arem, Bart |
description | This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates. |
doi_str_mv | 10.1111/mice.12498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321192856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321192856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqWw4QQjsUNKiRPXcdhVFT-VitjAOnLsSeuSxMVxWsoKcQLOyElwCWveYmYW37wZvSA4J9GIeF3VWuKIxDTjB8GAUJaGnLH00M9RloQZ4-lxcNK2q8iL0mQQfE6g0N8fXxVusILaKF-dAbN2utbvCNYIBQ26rbEvLZTGgoBav7nOIpgSatF0ogLRKBCdM7VwqEBZvdHN4homDeDGVJ3TphF2B5WRHm5RWLkEUS2M1W5ZnwZHpahaPPvrw-D59uZpeh_OH-9m08k8lAkf81CpQsgSFS0oQZJmnNEMx6WIBYkJKaNMMh7xQhSSMZXRghclpjJJmZQFRcWSYXDR-66tee2wdfnKdLbxJ_M48RZZzMd76rKnpDVta7HM11bX_vucRPk-43yfcf6bsYdJD291hbt_yPxhNr3pd34AozaCuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321192856</pqid></control><display><type>article</type><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</creator><creatorcontrib>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</creatorcontrib><description>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12498</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Evolutionary algorithms ; Optimization ; Penetration ; Roads ; Search algorithms ; Vehicles</subject><ispartof>Computer-aided civil and infrastructure engineering, 2020-01, Vol.35 (1), p.80-96</ispartof><rights>2019 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals, Inc. on behalf of Editor</rights><rights>2020 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</citedby><cites>FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12498$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12498$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Madadi, Bahman</creatorcontrib><creatorcontrib>Nes, Rob</creatorcontrib><creatorcontrib>Snelder, Maaike</creatorcontrib><creatorcontrib>Arem, Bart</creatorcontrib><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Evolutionary algorithms</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Roads</subject><subject>Search algorithms</subject><subject>Vehicles</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE1OwzAQhSMEEqWw4QQjsUNKiRPXcdhVFT-VitjAOnLsSeuSxMVxWsoKcQLOyElwCWveYmYW37wZvSA4J9GIeF3VWuKIxDTjB8GAUJaGnLH00M9RloQZ4-lxcNK2q8iL0mQQfE6g0N8fXxVusILaKF-dAbN2utbvCNYIBQ26rbEvLZTGgoBav7nOIpgSatF0ogLRKBCdM7VwqEBZvdHN4homDeDGVJ3TphF2B5WRHm5RWLkEUS2M1W5ZnwZHpahaPPvrw-D59uZpeh_OH-9m08k8lAkf81CpQsgSFS0oQZJmnNEMx6WIBYkJKaNMMh7xQhSSMZXRghclpjJJmZQFRcWSYXDR-66tee2wdfnKdLbxJ_M48RZZzMd76rKnpDVta7HM11bX_vucRPk-43yfcf6bsYdJD291hbt_yPxhNr3pd34AozaCuQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Madadi, Bahman</creator><creator>Nes, Rob</creator><creator>Snelder, Maaike</creator><creator>Arem, Bart</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</title><author>Madadi, Bahman ; Nes, Rob ; Snelder, Maaike ; Arem, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3858-ddbacfed4b41e1798649e5fa2a1211f09c6808babc66d94b8bfe7c376ccb4ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Evolutionary algorithms</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Roads</topic><topic>Search algorithms</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madadi, Bahman</creatorcontrib><creatorcontrib>Nes, Rob</creatorcontrib><creatorcontrib>Snelder, Maaike</creatorcontrib><creatorcontrib>Arem, Bart</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madadi, Bahman</au><au>Nes, Rob</au><au>Snelder, Maaike</au><au>Arem, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2020-01</date><risdate>2020</risdate><volume>35</volume><issue>1</issue><spage>80</spage><epage>96</epage><pages>80-96</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12498</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2020-01, Vol.35 (1), p.80-96 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2321192856 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Algorithms Automation Evolutionary algorithms Optimization Penetration Roads Search algorithms Vehicles |
title | A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi%E2%80%90level%20model%20to%20optimize%20road%20networks%20for%20a%20mixture%20of%20manual%20and%20automated%20driving:%20An%20evolutionary%20local%20search%20algorithm&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Madadi,%20Bahman&rft.date=2020-01&rft.volume=35&rft.issue=1&rft.spage=80&rft.epage=96&rft.pages=80-96&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12498&rft_dat=%3Cproquest_cross%3E2321192856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321192856&rft_id=info:pmid/&rfr_iscdi=true |