Comparing methods for mapping global parasite diversity
Aim Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we u...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2020-01, Vol.29 (1), p.182-193 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 182 |
container_title | Global ecology and biogeography |
container_volume | 29 |
creator | Pappalardo, Paula Morales‐Castilla, Ignacio Park, Andrew W. Huang, Shan Schmidt, John P. Stephens, Patrick R. Jordan, Greg |
description | Aim
Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we use to infer parasite geographic ranges and parasite species richness across the globe.
Innovation
To date, most studies exploring spatial patterns of parasite diversity assumed, with little validation, that the geographic range of a parasite species can be represented by the collective geographic range of its host species. Our study compares this assumption with a suite of other methods to infer parasite distribution from parasite occurrence data (e.g., based on data density, ecoregions and climatic conditions). We highlight diversity hotspots identified by the various methods and compare the effects of sampling intensities in different regions, a crucial factor determining observed parasite diversity.
Main conclusions
The type of model used to infer parasite distributions affects estimates of both total species richness and spatial patterns of hotspots of parasite richness. Overall, the models based on reported occurrences share similar areas of high parasite richness that tend to be biased towards areas of high sampling effort. In contrast, the model based on host distributions showed hotspots of parasite diversity that are biased towards areas of high host species richness. Accounting for sampling effort could only help to reconcile the outcome from the different models in some regions. Further, the non‐saturated species accumulation curves even for the best studied regions of the world such as Europe and North America serve as a call for further sampling effort and development of effective analytic tools that can provide robust accounts of global parasite diversity. |
doi_str_mv | 10.1111/geb.13008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321187737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321187737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-a4911146356cc17589e5d23ee65748ae6ef5d49c07fe65c9de6f40ecc60809993</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFYX_oOAKxdpZzLvpZZahYIbBXfDdHITU5JOnGmV_HunRtx5N_dw-O6Dg9A1wTOSal7DZkYoxuoETQgTIlcFVad_ung7RxcxbjHGnHExQXLhu96GZldnHezffRmzyoess31_9OrWb2ybJcLGZg9Z2XxCSGq4RGeVbSNc_fYpen1Yviwe8_Xz6mlxt85doaXKLdPpKyYoF84RyZUGXhYUQHDJlAUBFS-ZdlhWyXK6BFExDM4JrLDWmk7Rzbi3D_7jAHFvtv4QdumkKWhBiJKSykTdjpQLPsYAlelD09kwGILNMReTcjE_uSR2PrJfTQvD_6BZLe_HiW9wXmMO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321187737</pqid></control><display><type>article</type><title>Comparing methods for mapping global parasite diversity</title><source>Access via Wiley Online Library</source><creator>Pappalardo, Paula ; Morales‐Castilla, Ignacio ; Park, Andrew W. ; Huang, Shan ; Schmidt, John P. ; Stephens, Patrick R. ; Jordan, Greg</creator><contributor>Jordan, Greg</contributor><creatorcontrib>Pappalardo, Paula ; Morales‐Castilla, Ignacio ; Park, Andrew W. ; Huang, Shan ; Schmidt, John P. ; Stephens, Patrick R. ; Jordan, Greg ; Jordan, Greg</creatorcontrib><description>Aim
Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we use to infer parasite geographic ranges and parasite species richness across the globe.
Innovation
To date, most studies exploring spatial patterns of parasite diversity assumed, with little validation, that the geographic range of a parasite species can be represented by the collective geographic range of its host species. Our study compares this assumption with a suite of other methods to infer parasite distribution from parasite occurrence data (e.g., based on data density, ecoregions and climatic conditions). We highlight diversity hotspots identified by the various methods and compare the effects of sampling intensities in different regions, a crucial factor determining observed parasite diversity.
Main conclusions
The type of model used to infer parasite distributions affects estimates of both total species richness and spatial patterns of hotspots of parasite richness. Overall, the models based on reported occurrences share similar areas of high parasite richness that tend to be biased towards areas of high sampling effort. In contrast, the model based on host distributions showed hotspots of parasite diversity that are biased towards areas of high host species richness. Accounting for sampling effort could only help to reconcile the outcome from the different models in some regions. Further, the non‐saturated species accumulation curves even for the best studied regions of the world such as Europe and North America serve as a call for further sampling effort and development of effective analytic tools that can provide robust accounts of global parasite diversity.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13008</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>biodiversity ; cartography ; Climatic conditions ; geographic range ; Identification methods ; infectious disease ; mammalian host ; Mapping ; parasite ; Parasites ; pathogen ; Sampling ; Spatial variations ; Species diversity ; Species richness</subject><ispartof>Global ecology and biogeography, 2020-01, Vol.29 (1), p.182-193</ispartof><rights>2019 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-a4911146356cc17589e5d23ee65748ae6ef5d49c07fe65c9de6f40ecc60809993</citedby><cites>FETCH-LOGICAL-c2978-a4911146356cc17589e5d23ee65748ae6ef5d49c07fe65c9de6f40ecc60809993</cites><orcidid>0000-0002-5055-1308 ; 0000-0003-1995-5715 ; 0000-0001-8549-0587 ; 0000-0002-8570-9312 ; 0000-0003-4080-7274 ; 0000-0003-0853-7681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Jordan, Greg</contributor><creatorcontrib>Pappalardo, Paula</creatorcontrib><creatorcontrib>Morales‐Castilla, Ignacio</creatorcontrib><creatorcontrib>Park, Andrew W.</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Schmidt, John P.</creatorcontrib><creatorcontrib>Stephens, Patrick R.</creatorcontrib><creatorcontrib>Jordan, Greg</creatorcontrib><title>Comparing methods for mapping global parasite diversity</title><title>Global ecology and biogeography</title><description>Aim
Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we use to infer parasite geographic ranges and parasite species richness across the globe.
Innovation
To date, most studies exploring spatial patterns of parasite diversity assumed, with little validation, that the geographic range of a parasite species can be represented by the collective geographic range of its host species. Our study compares this assumption with a suite of other methods to infer parasite distribution from parasite occurrence data (e.g., based on data density, ecoregions and climatic conditions). We highlight diversity hotspots identified by the various methods and compare the effects of sampling intensities in different regions, a crucial factor determining observed parasite diversity.
Main conclusions
The type of model used to infer parasite distributions affects estimates of both total species richness and spatial patterns of hotspots of parasite richness. Overall, the models based on reported occurrences share similar areas of high parasite richness that tend to be biased towards areas of high sampling effort. In contrast, the model based on host distributions showed hotspots of parasite diversity that are biased towards areas of high host species richness. Accounting for sampling effort could only help to reconcile the outcome from the different models in some regions. Further, the non‐saturated species accumulation curves even for the best studied regions of the world such as Europe and North America serve as a call for further sampling effort and development of effective analytic tools that can provide robust accounts of global parasite diversity.</description><subject>biodiversity</subject><subject>cartography</subject><subject>Climatic conditions</subject><subject>geographic range</subject><subject>Identification methods</subject><subject>infectious disease</subject><subject>mammalian host</subject><subject>Mapping</subject><subject>parasite</subject><subject>Parasites</subject><subject>pathogen</subject><subject>Sampling</subject><subject>Spatial variations</subject><subject>Species diversity</subject><subject>Species richness</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFYX_oOAKxdpZzLvpZZahYIbBXfDdHITU5JOnGmV_HunRtx5N_dw-O6Dg9A1wTOSal7DZkYoxuoETQgTIlcFVad_ung7RxcxbjHGnHExQXLhu96GZldnHezffRmzyoess31_9OrWb2ybJcLGZg9Z2XxCSGq4RGeVbSNc_fYpen1Yviwe8_Xz6mlxt85doaXKLdPpKyYoF84RyZUGXhYUQHDJlAUBFS-ZdlhWyXK6BFExDM4JrLDWmk7Rzbi3D_7jAHFvtv4QdumkKWhBiJKSykTdjpQLPsYAlelD09kwGILNMReTcjE_uSR2PrJfTQvD_6BZLe_HiW9wXmMO</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Pappalardo, Paula</creator><creator>Morales‐Castilla, Ignacio</creator><creator>Park, Andrew W.</creator><creator>Huang, Shan</creator><creator>Schmidt, John P.</creator><creator>Stephens, Patrick R.</creator><creator>Jordan, Greg</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0002-5055-1308</orcidid><orcidid>https://orcid.org/0000-0003-1995-5715</orcidid><orcidid>https://orcid.org/0000-0001-8549-0587</orcidid><orcidid>https://orcid.org/0000-0002-8570-9312</orcidid><orcidid>https://orcid.org/0000-0003-4080-7274</orcidid><orcidid>https://orcid.org/0000-0003-0853-7681</orcidid></search><sort><creationdate>202001</creationdate><title>Comparing methods for mapping global parasite diversity</title><author>Pappalardo, Paula ; Morales‐Castilla, Ignacio ; Park, Andrew W. ; Huang, Shan ; Schmidt, John P. ; Stephens, Patrick R. ; Jordan, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-a4911146356cc17589e5d23ee65748ae6ef5d49c07fe65c9de6f40ecc60809993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biodiversity</topic><topic>cartography</topic><topic>Climatic conditions</topic><topic>geographic range</topic><topic>Identification methods</topic><topic>infectious disease</topic><topic>mammalian host</topic><topic>Mapping</topic><topic>parasite</topic><topic>Parasites</topic><topic>pathogen</topic><topic>Sampling</topic><topic>Spatial variations</topic><topic>Species diversity</topic><topic>Species richness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pappalardo, Paula</creatorcontrib><creatorcontrib>Morales‐Castilla, Ignacio</creatorcontrib><creatorcontrib>Park, Andrew W.</creatorcontrib><creatorcontrib>Huang, Shan</creatorcontrib><creatorcontrib>Schmidt, John P.</creatorcontrib><creatorcontrib>Stephens, Patrick R.</creatorcontrib><creatorcontrib>Jordan, Greg</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pappalardo, Paula</au><au>Morales‐Castilla, Ignacio</au><au>Park, Andrew W.</au><au>Huang, Shan</au><au>Schmidt, John P.</au><au>Stephens, Patrick R.</au><au>Jordan, Greg</au><au>Jordan, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing methods for mapping global parasite diversity</atitle><jtitle>Global ecology and biogeography</jtitle><date>2020-01</date><risdate>2020</risdate><volume>29</volume><issue>1</issue><spage>182</spage><epage>193</epage><pages>182-193</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>Aim
Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we use to infer parasite geographic ranges and parasite species richness across the globe.
Innovation
To date, most studies exploring spatial patterns of parasite diversity assumed, with little validation, that the geographic range of a parasite species can be represented by the collective geographic range of its host species. Our study compares this assumption with a suite of other methods to infer parasite distribution from parasite occurrence data (e.g., based on data density, ecoregions and climatic conditions). We highlight diversity hotspots identified by the various methods and compare the effects of sampling intensities in different regions, a crucial factor determining observed parasite diversity.
Main conclusions
The type of model used to infer parasite distributions affects estimates of both total species richness and spatial patterns of hotspots of parasite richness. Overall, the models based on reported occurrences share similar areas of high parasite richness that tend to be biased towards areas of high sampling effort. In contrast, the model based on host distributions showed hotspots of parasite diversity that are biased towards areas of high host species richness. Accounting for sampling effort could only help to reconcile the outcome from the different models in some regions. Further, the non‐saturated species accumulation curves even for the best studied regions of the world such as Europe and North America serve as a call for further sampling effort and development of effective analytic tools that can provide robust accounts of global parasite diversity.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5055-1308</orcidid><orcidid>https://orcid.org/0000-0003-1995-5715</orcidid><orcidid>https://orcid.org/0000-0001-8549-0587</orcidid><orcidid>https://orcid.org/0000-0002-8570-9312</orcidid><orcidid>https://orcid.org/0000-0003-4080-7274</orcidid><orcidid>https://orcid.org/0000-0003-0853-7681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2020-01, Vol.29 (1), p.182-193 |
issn | 1466-822X 1466-8238 |
language | eng |
recordid | cdi_proquest_journals_2321187737 |
source | Access via Wiley Online Library |
subjects | biodiversity cartography Climatic conditions geographic range Identification methods infectious disease mammalian host Mapping parasite Parasites pathogen Sampling Spatial variations Species diversity Species richness |
title | Comparing methods for mapping global parasite diversity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20methods%20for%20mapping%20global%20parasite%20diversity&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Pappalardo,%20Paula&rft.date=2020-01&rft.volume=29&rft.issue=1&rft.spage=182&rft.epage=193&rft.pages=182-193&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13008&rft_dat=%3Cproquest_cross%3E2321187737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321187737&rft_id=info:pmid/&rfr_iscdi=true |