Measuring “Dark Matter” in Asset Pricing Models
We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark...
Gespeichert in:
Veröffentlicht in: | NBER Working Paper Series 2019-11, p.26418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 26418 |
container_title | NBER Working Paper Series |
container_volume | |
creator | Chen, Hui Dou, Winston Wei Kogan, Leonid |
description | We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark matter measure signifies that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models. |
doi_str_mv | 10.3386/w26418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2320934683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nber_id>w26418</nber_id><sourcerecordid>2320934683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1093-b9a0e3f6f5bec2f06ad9519bb3bbe6af2a00a78ca535295c4396901ed217cabe3</originalsourceid><addsrcrecordid>eNo90LFOwzAQBmAPIFEKPABTJOaA7Usce6wKFKRWMMAcnZ0LSilJsRMhtj4IvFyfBKMgpls-_b_-Y-xM8EsAra4-pMqEPmATro1OpYHiiB2HsOZcas3FhMGKMAy-aV-S_e7rGv1rssK-J7_ffSdNm8xCoD559I37Jauuok04YYc1bgKd_t0pe769eZrfpcuHxf18tkyd4AZSa5AT1KrOLTlZc4WVyYWxFqwlhbVEzrHQDnPIpcldBkYZLqiSonBoCabsYszd-u59oNCX627wbawsJchYkSkNUSWjIte1TSi3vnlD_1mKIk6MyaqI5HwkrSX_D8bfwA9osld6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320934683</pqid></control><display><type>article</type><title>Measuring “Dark Matter” in Asset Pricing Models</title><source>National Bureau of Economic Research Publications</source><source>Alma/SFX Local Collection</source><creator>Chen, Hui ; Dou, Winston Wei ; Kogan, Leonid</creator><creatorcontrib>Chen, Hui ; Dou, Winston Wei ; Kogan, Leonid</creatorcontrib><description>We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark matter measure signifies that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.</description><identifier>ISSN: 0898-2937</identifier><identifier>DOI: 10.3386/w26418</identifier><language>eng</language><publisher>Cambridge, Mass: National Bureau of Economic Research</publisher><subject>Asset Pricing ; Capital markets ; Cosmology ; Dark matter ; Economic models ; Economic theory ; Sensitivity analysis</subject><ispartof>NBER Working Paper Series, 2019-11, p.26418</ispartof><rights>Copyright National Bureau of Economic Research, Inc. Nov 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1093-b9a0e3f6f5bec2f06ad9519bb3bbe6af2a00a78ca535295c4396901ed217cabe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Kogan, Leonid</creatorcontrib><title>Measuring “Dark Matter” in Asset Pricing Models</title><title>NBER Working Paper Series</title><description>We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark matter measure signifies that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.</description><subject>Asset Pricing</subject><subject>Capital markets</subject><subject>Cosmology</subject><subject>Dark matter</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Sensitivity analysis</subject><issn>0898-2937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>NBR</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo90LFOwzAQBmAPIFEKPABTJOaA7Usce6wKFKRWMMAcnZ0LSilJsRMhtj4IvFyfBKMgpls-_b_-Y-xM8EsAra4-pMqEPmATro1OpYHiiB2HsOZcas3FhMGKMAy-aV-S_e7rGv1rssK-J7_ffSdNm8xCoD559I37Jauuok04YYc1bgKd_t0pe769eZrfpcuHxf18tkyd4AZSa5AT1KrOLTlZc4WVyYWxFqwlhbVEzrHQDnPIpcldBkYZLqiSonBoCabsYszd-u59oNCX627wbawsJchYkSkNUSWjIte1TSi3vnlD_1mKIk6MyaqI5HwkrSX_D8bfwA9osld6</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Chen, Hui</creator><creator>Dou, Winston Wei</creator><creator>Kogan, Leonid</creator><general>National Bureau of Economic Research</general><general>National Bureau of Economic Research, Inc</general><scope>CZO</scope><scope>MPB</scope><scope>NBR</scope><scope>XD6</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>Measuring “Dark Matter” in Asset Pricing Models</title><author>Chen, Hui ; Dou, Winston Wei ; Kogan, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1093-b9a0e3f6f5bec2f06ad9519bb3bbe6af2a00a78ca535295c4396901ed217cabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asset Pricing</topic><topic>Capital markets</topic><topic>Cosmology</topic><topic>Dark matter</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Kogan, Leonid</creatorcontrib><collection>NBER Working Papers</collection><collection>NBER</collection><collection>National Bureau of Economic Research Publications</collection><collection>NBER Technical Working Papers Archive</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hui</au><au>Dou, Winston Wei</au><au>Kogan, Leonid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measuring “Dark Matter” in Asset Pricing Models</atitle><jtitle>NBER Working Paper Series</jtitle><date>2019-11-01</date><risdate>2019</risdate><spage>26418</spage><pages>26418-</pages><issn>0898-2937</issn><abstract>We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark matter measure signifies that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.</abstract><cop>Cambridge, Mass</cop><pub>National Bureau of Economic Research</pub><doi>10.3386/w26418</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2937 |
ispartof | NBER Working Paper Series, 2019-11, p.26418 |
issn | 0898-2937 |
language | eng |
recordid | cdi_proquest_journals_2320934683 |
source | National Bureau of Economic Research Publications; Alma/SFX Local Collection |
subjects | Asset Pricing Capital markets Cosmology Dark matter Economic models Economic theory Sensitivity analysis |
title | Measuring “Dark Matter” in Asset Pricing Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measuring%20%E2%80%9CDark%20Matter%E2%80%9D%20in%20Asset%20Pricing%20Models&rft.jtitle=NBER%20Working%20Paper%20Series&rft.au=Chen,%20Hui&rft.date=2019-11-01&rft.spage=26418&rft.pages=26418-&rft.issn=0898-2937&rft_id=info:doi/10.3386/w26418&rft_dat=%3Cproquest_econi%3E2320934683%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320934683&rft_id=info:pmid/&rft_nber_id=w26418&rfr_iscdi=true |