Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?

The automation of safety-relevant technical systems leads to the challenge of demonstrating the reliability of safety-critical sensor information that enables automation. An example of the same is the environment perception in automated driving vehicles, provided by lidar, radar, and, camera sensors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2019-12, Vol.68 (4), p.1227-1241
Hauptverfasser: Berk, Mario, Schubert, Olaf, Kroll, Hans-Martin, Buschardt, Boris, Straub, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 4
container_start_page 1227
container_title IEEE transactions on reliability
container_volume 68
creator Berk, Mario
Schubert, Olaf
Kroll, Hans-Martin
Buschardt, Boris
Straub, Daniel
description The automation of safety-relevant technical systems leads to the challenge of demonstrating the reliability of safety-critical sensor information that enables automation. An example of the same is the environment perception in automated driving vehicles, provided by lidar, radar, and, camera sensors. One way of assessing the reliability of these sensors is to conduct field tests with a reference sensing system. However, in this method, the required test effort is enormous and generating a reference truth is time consuming. In this paper, this motivates to investigate if in principle, it is possible to learn sensor information reliabilities without a reference truth, by solely comparing the output of redundant sensors. We develop such a testing framework, which enables learning of the sensors' reliabilities and sensor error dependencies without a reference truth. We show with synthetic datasets that the framework correctly determines the sensor information reliability if an adequate statistical model for sensor errors and dependencies among sensors is employed. Therefore, sensor information reliabilities can potentially be learned from driver-controlled cars, equipped solely with standard sensors without reference systems, which is an opportunity for large-scale testing. The main challenge to avoid wrong inference is to check the appropriateness of the selected statistical model without reference truth.
doi_str_mv 10.1109/TR.2019.2923735
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2320878102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8760570</ieee_id><sourcerecordid>2320878102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-7bb2b27291a61e5bea6c49a1380ff5d0278504e4cad5965bf9d3bcbdaceb2c8a3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKdnD14CnrsladMmXmTMX4PhoKtXQ5J-wY6umUl32H9vx4anjxee9_3gQeiekgmlRE6rcsIIlRMmWVqk_AKNKOcioQWjl2hECBWJ5Exeo5sYN0PMMilG6LuEttGmaZv-gGcxQoxb6HrsHV5rB_0hmYemb6xu8Rq66ANedM6Hre4b3z3hFw8RrzrAnwA11rgEBwE6C7gK-_7n-RZdOd1GuDvfMfp6e63mH8ly9b6Yz5aJZUL2SWEMM6xgkuqcAjegc5tJTVNBnOM1YYXgJIPM6prLnBsn69RYU2sLhlmh0zF6PO3ugv_dQ-zVxu9DN7xULGVEFIISNlDTE2WDjzGAU7vQbHU4KErUUaKqSnWUqM4Sh8bDqdEAwD8tipzwgqR_anRt5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320878102</pqid></control><display><type>article</type><title>Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?</title><source>IEEE Electronic Library (IEL)</source><creator>Berk, Mario ; Schubert, Olaf ; Kroll, Hans-Martin ; Buschardt, Boris ; Straub, Daniel</creator><creatorcontrib>Berk, Mario ; Schubert, Olaf ; Kroll, Hans-Martin ; Buschardt, Boris ; Straub, Daniel</creatorcontrib><description>The automation of safety-relevant technical systems leads to the challenge of demonstrating the reliability of safety-critical sensor information that enables automation. An example of the same is the environment perception in automated driving vehicles, provided by lidar, radar, and, camera sensors. One way of assessing the reliability of these sensors is to conduct field tests with a reference sensing system. However, in this method, the required test effort is enormous and generating a reference truth is time consuming. In this paper, this motivates to investigate if in principle, it is possible to learn sensor information reliabilities without a reference truth, by solely comparing the output of redundant sensors. We develop such a testing framework, which enables learning of the sensors' reliabilities and sensor error dependencies without a reference truth. We show with synthetic datasets that the framework correctly determines the sensor information reliability if an adequate statistical model for sensor errors and dependencies among sensors is employed. Therefore, sensor information reliabilities can potentially be learned from driver-controlled cars, equipped solely with standard sensors without reference systems, which is an opportunity for large-scale testing. The main challenge to avoid wrong inference is to check the appropriateness of the selected statistical model without reference truth.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2019.2923735</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced driver assistance systems ; automated driving vehicles ; Automation ; Automobiles ; Drivers ; Driving ; environment perception ; Error probability ; Field tests ; Measurement uncertainty ; Reference systems ; Reliability analysis ; reliability engineering ; Reliability theory ; Safety ; Safety critical ; safety-critical sensor information ; sensor information reliability ; sensor system reliability ; Sensor systems ; Sensors ; Statistical inference ; Statistical models ; Testing</subject><ispartof>IEEE transactions on reliability, 2019-12, Vol.68 (4), p.1227-1241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-7bb2b27291a61e5bea6c49a1380ff5d0278504e4cad5965bf9d3bcbdaceb2c8a3</citedby><cites>FETCH-LOGICAL-c289t-7bb2b27291a61e5bea6c49a1380ff5d0278504e4cad5965bf9d3bcbdaceb2c8a3</cites><orcidid>0000-0003-0990-5984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8760570$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8760570$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berk, Mario</creatorcontrib><creatorcontrib>Schubert, Olaf</creatorcontrib><creatorcontrib>Kroll, Hans-Martin</creatorcontrib><creatorcontrib>Buschardt, Boris</creatorcontrib><creatorcontrib>Straub, Daniel</creatorcontrib><title>Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The automation of safety-relevant technical systems leads to the challenge of demonstrating the reliability of safety-critical sensor information that enables automation. An example of the same is the environment perception in automated driving vehicles, provided by lidar, radar, and, camera sensors. One way of assessing the reliability of these sensors is to conduct field tests with a reference sensing system. However, in this method, the required test effort is enormous and generating a reference truth is time consuming. In this paper, this motivates to investigate if in principle, it is possible to learn sensor information reliabilities without a reference truth, by solely comparing the output of redundant sensors. We develop such a testing framework, which enables learning of the sensors' reliabilities and sensor error dependencies without a reference truth. We show with synthetic datasets that the framework correctly determines the sensor information reliability if an adequate statistical model for sensor errors and dependencies among sensors is employed. Therefore, sensor information reliabilities can potentially be learned from driver-controlled cars, equipped solely with standard sensors without reference systems, which is an opportunity for large-scale testing. The main challenge to avoid wrong inference is to check the appropriateness of the selected statistical model without reference truth.</description><subject>Advanced driver assistance systems</subject><subject>automated driving vehicles</subject><subject>Automation</subject><subject>Automobiles</subject><subject>Drivers</subject><subject>Driving</subject><subject>environment perception</subject><subject>Error probability</subject><subject>Field tests</subject><subject>Measurement uncertainty</subject><subject>Reference systems</subject><subject>Reliability analysis</subject><subject>reliability engineering</subject><subject>Reliability theory</subject><subject>Safety</subject><subject>Safety critical</subject><subject>safety-critical sensor information</subject><subject>sensor information reliability</subject><subject>sensor system reliability</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Statistical models</subject><subject>Testing</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKdnD14CnrsladMmXmTMX4PhoKtXQ5J-wY6umUl32H9vx4anjxee9_3gQeiekgmlRE6rcsIIlRMmWVqk_AKNKOcioQWjl2hECBWJ5Exeo5sYN0PMMilG6LuEttGmaZv-gGcxQoxb6HrsHV5rB_0hmYemb6xu8Rq66ANedM6Hre4b3z3hFw8RrzrAnwA11rgEBwE6C7gK-_7n-RZdOd1GuDvfMfp6e63mH8ly9b6Yz5aJZUL2SWEMM6xgkuqcAjegc5tJTVNBnOM1YYXgJIPM6prLnBsn69RYU2sLhlmh0zF6PO3ugv_dQ-zVxu9DN7xULGVEFIISNlDTE2WDjzGAU7vQbHU4KErUUaKqSnWUqM4Sh8bDqdEAwD8tipzwgqR_anRt5g</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Berk, Mario</creator><creator>Schubert, Olaf</creator><creator>Kroll, Hans-Martin</creator><creator>Buschardt, Boris</creator><creator>Straub, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0990-5984</orcidid></search><sort><creationdate>201912</creationdate><title>Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?</title><author>Berk, Mario ; Schubert, Olaf ; Kroll, Hans-Martin ; Buschardt, Boris ; Straub, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-7bb2b27291a61e5bea6c49a1380ff5d0278504e4cad5965bf9d3bcbdaceb2c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advanced driver assistance systems</topic><topic>automated driving vehicles</topic><topic>Automation</topic><topic>Automobiles</topic><topic>Drivers</topic><topic>Driving</topic><topic>environment perception</topic><topic>Error probability</topic><topic>Field tests</topic><topic>Measurement uncertainty</topic><topic>Reference systems</topic><topic>Reliability analysis</topic><topic>reliability engineering</topic><topic>Reliability theory</topic><topic>Safety</topic><topic>Safety critical</topic><topic>safety-critical sensor information</topic><topic>sensor information reliability</topic><topic>sensor system reliability</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Statistical models</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berk, Mario</creatorcontrib><creatorcontrib>Schubert, Olaf</creatorcontrib><creatorcontrib>Kroll, Hans-Martin</creatorcontrib><creatorcontrib>Buschardt, Boris</creatorcontrib><creatorcontrib>Straub, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berk, Mario</au><au>Schubert, Olaf</au><au>Kroll, Hans-Martin</au><au>Buschardt, Boris</au><au>Straub, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2019-12</date><risdate>2019</risdate><volume>68</volume><issue>4</issue><spage>1227</spage><epage>1241</epage><pages>1227-1241</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The automation of safety-relevant technical systems leads to the challenge of demonstrating the reliability of safety-critical sensor information that enables automation. An example of the same is the environment perception in automated driving vehicles, provided by lidar, radar, and, camera sensors. One way of assessing the reliability of these sensors is to conduct field tests with a reference sensing system. However, in this method, the required test effort is enormous and generating a reference truth is time consuming. In this paper, this motivates to investigate if in principle, it is possible to learn sensor information reliabilities without a reference truth, by solely comparing the output of redundant sensors. We develop such a testing framework, which enables learning of the sensors' reliabilities and sensor error dependencies without a reference truth. We show with synthetic datasets that the framework correctly determines the sensor information reliability if an adequate statistical model for sensor errors and dependencies among sensors is employed. Therefore, sensor information reliabilities can potentially be learned from driver-controlled cars, equipped solely with standard sensors without reference systems, which is an opportunity for large-scale testing. The main challenge to avoid wrong inference is to check the appropriateness of the selected statistical model without reference truth.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2019.2923735</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0990-5984</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2019-12, Vol.68 (4), p.1227-1241
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_journals_2320878102
source IEEE Electronic Library (IEL)
subjects Advanced driver assistance systems
automated driving vehicles
Automation
Automobiles
Drivers
Driving
environment perception
Error probability
Field tests
Measurement uncertainty
Reference systems
Reliability analysis
reliability engineering
Reliability theory
Safety
Safety critical
safety-critical sensor information
sensor information reliability
sensor system reliability
Sensor systems
Sensors
Statistical inference
Statistical models
Testing
title Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Assessment%20of%20Safety-Critical%20Sensor%20Information:%20Does%20One%20Need%20a%20Reference%20Truth?&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Berk,%20Mario&rft.date=2019-12&rft.volume=68&rft.issue=4&rft.spage=1227&rft.epage=1241&rft.pages=1227-1241&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2019.2923735&rft_dat=%3Cproquest_RIE%3E2320878102%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320878102&rft_id=info:pmid/&rft_ieee_id=8760570&rfr_iscdi=true