Prime and Homogeneous Rings and Algebras

Let ℳ be a structure of a signature Σ. For any ordered tuple a ¯ = a 1 … a n of elements of ℳ, tp M a ¯ denotes the set of formulas θ( x 1 , …,  x n ) of a first-order language over Σ with free variables x 1 , . . . , x n such that M = θ a 1 … a n . A structure ℳ is said to be strongly ω-homogeneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2019-09, Vol.58 (4), p.345-355
1. Verfasser: Timoshenko, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 4
container_start_page 345
container_title Algebra and logic
container_volume 58
creator Timoshenko, E. I.
description Let ℳ be a structure of a signature Σ. For any ordered tuple a ¯ = a 1 … a n of elements of ℳ, tp M a ¯ denotes the set of formulas θ( x 1 , …,  x n ) of a first-order language over Σ with free variables x 1 , . . . , x n such that M = θ a 1 … a n . A structure ℳ is said to be strongly ω-homogeneous if, for any finite ordered tuples a ¯ and b ¯ of elements of ℳ, the coincidence of tp M a ¯ and tp M b ¯ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure ℳ. A structure ℳ is said to be prime in its theory if it is elementarily embedded in every structure of the theory Th (ℳ). It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly ω-homogeneous.
doi_str_mv 10.1007/s10469-019-09556-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2319757973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681054084</galeid><sourcerecordid>A681054084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-402a30390340d7aba637a219f8988df535884082a38045d3e981dce1ed7255e13</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4KngxcvWSWazSY6lqBUKiug5pLuzy5Z2U5OW4tsbu0IRREIIM3zfTPgZu-Yw5gDqLnLIC5MBT9dIWWT7EzbgUmGmEcQpGwCAyKRAcc4uYlym0hQaBuz2JbRrGrmuGs382jfUkd_F0WvbNfHQnawaWgQXL9lZ7VaRrn7eIXt_uH-bzrL58-PTdDLPSkS1zXIQDgENYA6VcgtXoHKCm1obrataotQ6B50gDbmskIzmVUmcKiWkJI5DdtPP3QT_saO4tUu_C11aaQVyo6QyCo9U41Zk26722-DKdRtLOyk0B5l25Ika_0GlU9G6LX1HdZv6vwTRC2XwMQaq7SbF48Kn5WC_g7Z90DYFbQ9B232SsJdigruGwvHH_1hfTCN8ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319757973</pqid></control><display><type>article</type><title>Prime and Homogeneous Rings and Algebras</title><source>SpringerNature Journals</source><creator>Timoshenko, E. I.</creator><creatorcontrib>Timoshenko, E. I.</creatorcontrib><description>Let ℳ be a structure of a signature Σ. For any ordered tuple a ¯ = a 1 … a n of elements of ℳ, tp M a ¯ denotes the set of formulas θ( x 1 , …,  x n ) of a first-order language over Σ with free variables x 1 , . . . , x n such that M = θ a 1 … a n . A structure ℳ is said to be strongly ω-homogeneous if, for any finite ordered tuples a ¯ and b ¯ of elements of ℳ, the coincidence of tp M a ¯ and tp M b ¯ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure ℳ. A structure ℳ is said to be prime in its theory if it is elementarily embedded in every structure of the theory Th (ℳ). It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly ω-homogeneous.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-019-09556-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Automorphisms ; Embedded structures ; Lie groups ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Rings (mathematics)</subject><ispartof>Algebra and logic, 2019-09, Vol.58 (4), p.345-355</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-402a30390340d7aba637a219f8988df535884082a38045d3e981dce1ed7255e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-019-09556-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-019-09556-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Timoshenko, E. I.</creatorcontrib><title>Prime and Homogeneous Rings and Algebras</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Let ℳ be a structure of a signature Σ. For any ordered tuple a ¯ = a 1 … a n of elements of ℳ, tp M a ¯ denotes the set of formulas θ( x 1 , …,  x n ) of a first-order language over Σ with free variables x 1 , . . . , x n such that M = θ a 1 … a n . A structure ℳ is said to be strongly ω-homogeneous if, for any finite ordered tuples a ¯ and b ¯ of elements of ℳ, the coincidence of tp M a ¯ and tp M b ¯ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure ℳ. A structure ℳ is said to be prime in its theory if it is elementarily embedded in every structure of the theory Th (ℳ). It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly ω-homogeneous.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Embedded structures</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rings (mathematics)</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4KngxcvWSWazSY6lqBUKiug5pLuzy5Z2U5OW4tsbu0IRREIIM3zfTPgZu-Yw5gDqLnLIC5MBT9dIWWT7EzbgUmGmEcQpGwCAyKRAcc4uYlym0hQaBuz2JbRrGrmuGs382jfUkd_F0WvbNfHQnawaWgQXL9lZ7VaRrn7eIXt_uH-bzrL58-PTdDLPSkS1zXIQDgENYA6VcgtXoHKCm1obrataotQ6B50gDbmskIzmVUmcKiWkJI5DdtPP3QT_saO4tUu_C11aaQVyo6QyCo9U41Zk26722-DKdRtLOyk0B5l25Ika_0GlU9G6LX1HdZv6vwTRC2XwMQaq7SbF48Kn5WC_g7Z90DYFbQ9B232SsJdigruGwvHH_1hfTCN8ew</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Timoshenko, E. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Prime and Homogeneous Rings and Algebras</title><author>Timoshenko, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-402a30390340d7aba637a219f8988df535884082a38045d3e981dce1ed7255e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Embedded structures</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, E. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prime and Homogeneous Rings and Algebras</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>58</volume><issue>4</issue><spage>345</spage><epage>355</epage><pages>345-355</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Let ℳ be a structure of a signature Σ. For any ordered tuple a ¯ = a 1 … a n of elements of ℳ, tp M a ¯ denotes the set of formulas θ( x 1 , …,  x n ) of a first-order language over Σ with free variables x 1 , . . . , x n such that M = θ a 1 … a n . A structure ℳ is said to be strongly ω-homogeneous if, for any finite ordered tuples a ¯ and b ¯ of elements of ℳ, the coincidence of tp M a ¯ and tp M b ¯ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure ℳ. A structure ℳ is said to be prime in its theory if it is elementarily embedded in every structure of the theory Th (ℳ). It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly ω-homogeneous.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10469-019-09556-w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2019-09, Vol.58 (4), p.345-355
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_2319757973
source SpringerNature Journals
subjects Algebra
Automorphisms
Embedded structures
Lie groups
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Rings (mathematics)
title Prime and Homogeneous Rings and Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prime%20and%20Homogeneous%20Rings%20and%20Algebras&rft.jtitle=Algebra%20and%20logic&rft.au=Timoshenko,%20E.%20I.&rft.date=2019-09-01&rft.volume=58&rft.issue=4&rft.spage=345&rft.epage=355&rft.pages=345-355&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-019-09556-w&rft_dat=%3Cgale_proqu%3EA681054084%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319757973&rft_id=info:pmid/&rft_galeid=A681054084&rfr_iscdi=true