Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation

A malfunctioned satellite or other space debris is generally non-cooperative and tumbling, bringing great challenge to capture and remove it. In this paper, we propose a dual-arm coordinated capturing method based on efficient parameters estimation. Firstly, the dynamics model of a tumbling target i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-09, Vol.162, p.589-607
Hauptverfasser: Peng, Jianqing, Xu, Wenfu, Pan, ErZhen, Yan, Lei, Liang, Bin, Wu, Ai-guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue
container_start_page 589
container_title Acta astronautica
container_volume 162
creator Peng, Jianqing
Xu, Wenfu
Pan, ErZhen
Yan, Lei
Liang, Bin
Wu, Ai-guo
description A malfunctioned satellite or other space debris is generally non-cooperative and tumbling, bringing great challenge to capture and remove it. In this paper, we propose a dual-arm coordinated capturing method based on efficient parameters estimation. Firstly, the dynamics model of a tumbling target is deduced in details. Its motion characteristics are then analyzed. Secondly, we design an efficient Hybrid Kalman Filter (HKF) by combining Extended Kalman Filter (EKF) with Unscented Kalman Filter (UKF). It effectively overcomes the shortcoming of low accuracy of EKF and long iteration time of UKF, and improves the speed and accuracy of the Kalman Filter iteration algorithm. Two movement cases of an uncontrolled target are considered: one is rotation around the principal axes of inertia; the other is rotation around arbitrary axes. Thirdly, the estimated motion and inertia parameters are used to plan the trajectories of a dual-arm space robot to capture the tumbling target. Finally, the simulation environment is created and the proposed method is verified. The simulation results show that the proposed HKF algorithm can estimate the attitude quaternion, angular velocity, and the inertia tensor (including Ixx, Iyy, Izz, Ixy, Ixz and Iyz) with higher accuracy (compared to EKF) and lower computation cost (compared to UKF); the planned trajectories of the dual-arm space robot are effectively for tumbling target capturing. [Display omitted] •A space un-controlled target is modeled and analyzed theoretically.•Proposed HKF algorithm has higher accuracy and lower computation cost.•The attitude, angular velocity, and the inertia tensor can be simultaneously estimated.•Two typical movement cases of an uncontrolled target are considered.•Dual-arm trajectory is effectively planned to capture a tumbling target.
doi_str_mv 10.1016/j.actaastro.2019.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319718478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518317685</els_id><sourcerecordid>2319718478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b6430d91e3268a0b4515be09c74d0104d3cb18890e329ff94e907bb0772a2cd73</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDFjinLCO0zg-VuVXqsQFzpbjbCqH1i62A-LtcVXEldNKq29mdoeQawYlA9bcjqU2SeuYgi8rYLIEXgK0J2TGWiGLCjickhmArIuFaBbn5CLGEQBE1coZwbtJbwsddtR4H3rrdMKeGr1PU7BuQ_1AtaOTe3f-y9E07brtYZ102GCinY6Z9o7iMFhj0SW610HvMGGIFGOyO52sd5fkbNDbiFe_c07eHu5fV0_F-uXxebVcF4bXPBVdU3PoJUNeNa2Grl6wRYcgjah7YFD33HSsbSVkQA6DrFGC6DoQotKV6QWfk5uj7z74jynnq9FPweVIVXEmBWtr0WZKHCkTfIwBB7UP-dDwrRioQ6dqVH-dqkOnCrjKnWbl8qjE_MSnxaDi4WuDvQ1okuq9_dfjB7p2hXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319718478</pqid></control><display><type>article</type><title>Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Peng, Jianqing ; Xu, Wenfu ; Pan, ErZhen ; Yan, Lei ; Liang, Bin ; Wu, Ai-guo</creator><creatorcontrib>Peng, Jianqing ; Xu, Wenfu ; Pan, ErZhen ; Yan, Lei ; Liang, Bin ; Wu, Ai-guo</creatorcontrib><description>A malfunctioned satellite or other space debris is generally non-cooperative and tumbling, bringing great challenge to capture and remove it. In this paper, we propose a dual-arm coordinated capturing method based on efficient parameters estimation. Firstly, the dynamics model of a tumbling target is deduced in details. Its motion characteristics are then analyzed. Secondly, we design an efficient Hybrid Kalman Filter (HKF) by combining Extended Kalman Filter (EKF) with Unscented Kalman Filter (UKF). It effectively overcomes the shortcoming of low accuracy of EKF and long iteration time of UKF, and improves the speed and accuracy of the Kalman Filter iteration algorithm. Two movement cases of an uncontrolled target are considered: one is rotation around the principal axes of inertia; the other is rotation around arbitrary axes. Thirdly, the estimated motion and inertia parameters are used to plan the trajectories of a dual-arm space robot to capture the tumbling target. Finally, the simulation environment is created and the proposed method is verified. The simulation results show that the proposed HKF algorithm can estimate the attitude quaternion, angular velocity, and the inertia tensor (including Ixx, Iyy, Izz, Ixy, Ixz and Iyz) with higher accuracy (compared to EKF) and lower computation cost (compared to UKF); the planned trajectories of the dual-arm space robot are effectively for tumbling target capturing. [Display omitted] •A space un-controlled target is modeled and analyzed theoretically.•Proposed HKF algorithm has higher accuracy and lower computation cost.•The attitude, angular velocity, and the inertia tensor can be simultaneously estimated.•Two typical movement cases of an uncontrolled target are considered.•Dual-arm trajectory is effectively planned to capture a tumbling target.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.03.008</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>A dual-arm space robot ; Accuracy ; Algorithms ; Angular velocity ; Axes (reference lines) ; Computer simulation ; Coordinated capturing method ; Extended Kalman filter ; Hybrid Kalman filter ; Inertia ; Iterative algorithms ; Iterative methods ; Kalman filters ; Parameter estimation ; Parameters estimation ; Quaternions ; Rotation ; Satellites ; Space debris ; Space robots ; Tensors ; Trajectory planning ; Tumbling ; Tumbling target</subject><ispartof>Acta astronautica, 2019-09, Vol.162, p.589-607</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b6430d91e3268a0b4515be09c74d0104d3cb18890e329ff94e907bb0772a2cd73</citedby><cites>FETCH-LOGICAL-c343t-b6430d91e3268a0b4515be09c74d0104d3cb18890e329ff94e907bb0772a2cd73</cites><orcidid>0000-0002-8591-8843 ; 0000-0001-8218-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2019.03.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Peng, Jianqing</creatorcontrib><creatorcontrib>Xu, Wenfu</creatorcontrib><creatorcontrib>Pan, ErZhen</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Wu, Ai-guo</creatorcontrib><title>Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation</title><title>Acta astronautica</title><description>A malfunctioned satellite or other space debris is generally non-cooperative and tumbling, bringing great challenge to capture and remove it. In this paper, we propose a dual-arm coordinated capturing method based on efficient parameters estimation. Firstly, the dynamics model of a tumbling target is deduced in details. Its motion characteristics are then analyzed. Secondly, we design an efficient Hybrid Kalman Filter (HKF) by combining Extended Kalman Filter (EKF) with Unscented Kalman Filter (UKF). It effectively overcomes the shortcoming of low accuracy of EKF and long iteration time of UKF, and improves the speed and accuracy of the Kalman Filter iteration algorithm. Two movement cases of an uncontrolled target are considered: one is rotation around the principal axes of inertia; the other is rotation around arbitrary axes. Thirdly, the estimated motion and inertia parameters are used to plan the trajectories of a dual-arm space robot to capture the tumbling target. Finally, the simulation environment is created and the proposed method is verified. The simulation results show that the proposed HKF algorithm can estimate the attitude quaternion, angular velocity, and the inertia tensor (including Ixx, Iyy, Izz, Ixy, Ixz and Iyz) with higher accuracy (compared to EKF) and lower computation cost (compared to UKF); the planned trajectories of the dual-arm space robot are effectively for tumbling target capturing. [Display omitted] •A space un-controlled target is modeled and analyzed theoretically.•Proposed HKF algorithm has higher accuracy and lower computation cost.•The attitude, angular velocity, and the inertia tensor can be simultaneously estimated.•Two typical movement cases of an uncontrolled target are considered.•Dual-arm trajectory is effectively planned to capture a tumbling target.</description><subject>A dual-arm space robot</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Axes (reference lines)</subject><subject>Computer simulation</subject><subject>Coordinated capturing method</subject><subject>Extended Kalman filter</subject><subject>Hybrid Kalman filter</subject><subject>Inertia</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>Parameter estimation</subject><subject>Parameters estimation</subject><subject>Quaternions</subject><subject>Rotation</subject><subject>Satellites</subject><subject>Space debris</subject><subject>Space robots</subject><subject>Tensors</subject><subject>Trajectory planning</subject><subject>Tumbling</subject><subject>Tumbling target</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDFjinLCO0zg-VuVXqsQFzpbjbCqH1i62A-LtcVXEldNKq29mdoeQawYlA9bcjqU2SeuYgi8rYLIEXgK0J2TGWiGLCjickhmArIuFaBbn5CLGEQBE1coZwbtJbwsddtR4H3rrdMKeGr1PU7BuQ_1AtaOTe3f-y9E07brtYZ102GCinY6Z9o7iMFhj0SW610HvMGGIFGOyO52sd5fkbNDbiFe_c07eHu5fV0_F-uXxebVcF4bXPBVdU3PoJUNeNa2Grl6wRYcgjah7YFD33HSsbSVkQA6DrFGC6DoQotKV6QWfk5uj7z74jynnq9FPweVIVXEmBWtr0WZKHCkTfIwBB7UP-dDwrRioQ6dqVH-dqkOnCrjKnWbl8qjE_MSnxaDi4WuDvQ1okuq9_dfjB7p2hXI</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Peng, Jianqing</creator><creator>Xu, Wenfu</creator><creator>Pan, ErZhen</creator><creator>Yan, Lei</creator><creator>Liang, Bin</creator><creator>Wu, Ai-guo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8591-8843</orcidid><orcidid>https://orcid.org/0000-0001-8218-6061</orcidid></search><sort><creationdate>201909</creationdate><title>Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation</title><author>Peng, Jianqing ; Xu, Wenfu ; Pan, ErZhen ; Yan, Lei ; Liang, Bin ; Wu, Ai-guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b6430d91e3268a0b4515be09c74d0104d3cb18890e329ff94e907bb0772a2cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A dual-arm space robot</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Axes (reference lines)</topic><topic>Computer simulation</topic><topic>Coordinated capturing method</topic><topic>Extended Kalman filter</topic><topic>Hybrid Kalman filter</topic><topic>Inertia</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>Parameter estimation</topic><topic>Parameters estimation</topic><topic>Quaternions</topic><topic>Rotation</topic><topic>Satellites</topic><topic>Space debris</topic><topic>Space robots</topic><topic>Tensors</topic><topic>Trajectory planning</topic><topic>Tumbling</topic><topic>Tumbling target</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jianqing</creatorcontrib><creatorcontrib>Xu, Wenfu</creatorcontrib><creatorcontrib>Pan, ErZhen</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Wu, Ai-guo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jianqing</au><au>Xu, Wenfu</au><au>Pan, ErZhen</au><au>Yan, Lei</au><au>Liang, Bin</au><au>Wu, Ai-guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation</atitle><jtitle>Acta astronautica</jtitle><date>2019-09</date><risdate>2019</risdate><volume>162</volume><spage>589</spage><epage>607</epage><pages>589-607</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>A malfunctioned satellite or other space debris is generally non-cooperative and tumbling, bringing great challenge to capture and remove it. In this paper, we propose a dual-arm coordinated capturing method based on efficient parameters estimation. Firstly, the dynamics model of a tumbling target is deduced in details. Its motion characteristics are then analyzed. Secondly, we design an efficient Hybrid Kalman Filter (HKF) by combining Extended Kalman Filter (EKF) with Unscented Kalman Filter (UKF). It effectively overcomes the shortcoming of low accuracy of EKF and long iteration time of UKF, and improves the speed and accuracy of the Kalman Filter iteration algorithm. Two movement cases of an uncontrolled target are considered: one is rotation around the principal axes of inertia; the other is rotation around arbitrary axes. Thirdly, the estimated motion and inertia parameters are used to plan the trajectories of a dual-arm space robot to capture the tumbling target. Finally, the simulation environment is created and the proposed method is verified. The simulation results show that the proposed HKF algorithm can estimate the attitude quaternion, angular velocity, and the inertia tensor (including Ixx, Iyy, Izz, Ixy, Ixz and Iyz) with higher accuracy (compared to EKF) and lower computation cost (compared to UKF); the planned trajectories of the dual-arm space robot are effectively for tumbling target capturing. [Display omitted] •A space un-controlled target is modeled and analyzed theoretically.•Proposed HKF algorithm has higher accuracy and lower computation cost.•The attitude, angular velocity, and the inertia tensor can be simultaneously estimated.•Two typical movement cases of an uncontrolled target are considered.•Dual-arm trajectory is effectively planned to capture a tumbling target.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.03.008</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8591-8843</orcidid><orcidid>https://orcid.org/0000-0001-8218-6061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-09, Vol.162, p.589-607
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2319718478
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects A dual-arm space robot
Accuracy
Algorithms
Angular velocity
Axes (reference lines)
Computer simulation
Coordinated capturing method
Extended Kalman filter
Hybrid Kalman filter
Inertia
Iterative algorithms
Iterative methods
Kalman filters
Parameter estimation
Parameters estimation
Quaternions
Rotation
Satellites
Space debris
Space robots
Tensors
Trajectory planning
Tumbling
Tumbling target
title Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-arm%20coordinated%20capturing%20of%20an%20unknown%20tumbling%20target%20based%20on%20efficient%20parameters%20estimation&rft.jtitle=Acta%20astronautica&rft.au=Peng,%20Jianqing&rft.date=2019-09&rft.volume=162&rft.spage=589&rft.epage=607&rft.pages=589-607&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.03.008&rft_dat=%3Cproquest_cross%3E2319718478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319718478&rft_id=info:pmid/&rft_els_id=S0094576518317685&rfr_iscdi=true