Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi

Various research works have been proposed for Wi-Fi-based indoor localization, including Received Signal Strength Indicator (RSSI)-based fingerprint algorithm, Angle of Arrival (AoA)-based algorithm and so on. However, since RSSI value cannot accurately express the spatial features of emitted wirele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2019-10, Vol.162, p.106864, Article 106864
Hauptverfasser: Zhao, Bobai, Zhu, Dali, Xi, Tong, Jia, Chenggang, Jiang, Shang, Wang, Siye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106864
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 162
creator Zhao, Bobai
Zhu, Dali
Xi, Tong
Jia, Chenggang
Jiang, Shang
Wang, Siye
description Various research works have been proposed for Wi-Fi-based indoor localization, including Received Signal Strength Indicator (RSSI)-based fingerprint algorithm, Angle of Arrival (AoA)-based algorithm and so on. However, since RSSI value cannot accurately express the spatial features of emitted wireless signal, and the interfering noise in indoor environment makes the wireless signal distortion, RSSI-based localization algorithm cannot achieve an ideal accuracy. In this paper, we utilize Channel State Information (CSI) extracted from MIMO-OFDM PHY layer as fingerprint image to express the spatial and temporal features of Wi-Fi signal. At the same time, an indoor localization algorithm is also proposed, which is based on convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter, to achieve accurate position estimate with time-varying measurement noise and process noise in complex indoor environment. According to the simulation results, compared with existing methods, our proposed algorithm improves the positioning accuracy up to 51.8%. In the real indoor environment, our proposed algorithm improves the positioning accuracy up to 22% in LoS scenario, and 9.8% in NLoS scenario, respectively.
doi_str_mv 10.1016/j.comnet.2019.106864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319717755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128618311691</els_id><sourcerecordid>2319717755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-41f20f89630483883d2cf3bb3f462c10fd1457bec6f28fd2a701eba2be8784d33</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhpfQQlKn_yAHQc7r6su72kugNXUTEuglpUcxK42wnLXkSlqH9No_nnU2555mGN7nhXmq6orRJaOs-bJbmrgPWJacsm46NaqRZ9UFUy2vW9p0H6ZdqK5mXDXn1aecd5RSKbm6qP6tYzjGYSw-BhhIwDG9jfIc0xOBYIkdYagdmBITwbCFYNCSIyQP78w3eMFMwMKh-COSexj2EIjzQ8FEeshT3AcbJ3yIBgb_9w0kz75syW9fb_xl9dHBkPHz-1xUvzbfH9e39cPPH3frrw-1EYqWWjLHqVNdI6hUQilhuXGi74WTDTeMOsvkqu3RNI4rZzm0lGEPvEfVKmmFWFTXc-8hxT8j5qJ3cUzTC1lzwbqWte1qNaXknDIp5pzQ6UPye0gvmlF90q13etatT7r1rHvCbmYMpw-OHpPOxuNJlk9oirbR_7_gFSFBjRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319717755</pqid></control><display><type>article</type><title>Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Bobai ; Zhu, Dali ; Xi, Tong ; Jia, Chenggang ; Jiang, Shang ; Wang, Siye</creator><creatorcontrib>Zhao, Bobai ; Zhu, Dali ; Xi, Tong ; Jia, Chenggang ; Jiang, Shang ; Wang, Siye</creatorcontrib><description>Various research works have been proposed for Wi-Fi-based indoor localization, including Received Signal Strength Indicator (RSSI)-based fingerprint algorithm, Angle of Arrival (AoA)-based algorithm and so on. However, since RSSI value cannot accurately express the spatial features of emitted wireless signal, and the interfering noise in indoor environment makes the wireless signal distortion, RSSI-based localization algorithm cannot achieve an ideal accuracy. In this paper, we utilize Channel State Information (CSI) extracted from MIMO-OFDM PHY layer as fingerprint image to express the spatial and temporal features of Wi-Fi signal. At the same time, an indoor localization algorithm is also proposed, which is based on convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter, to achieve accurate position estimate with time-varying measurement noise and process noise in complex indoor environment. According to the simulation results, compared with existing methods, our proposed algorithm improves the positioning accuracy up to 51.8%. In the real indoor environment, our proposed algorithm improves the positioning accuracy up to 22% in LoS scenario, and 9.8% in NLoS scenario, respectively.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2019.106864</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Adaptive filters ; Algorithms ; Angle of arrival ; Artificial neural networks ; Bayesian analysis ; Channel State Information ; Computer simulation ; Convolution neural network ; Fingerprints ; Indoor environments ; Indoor localization ; Kalman filters ; Localization ; Neural networks ; Noise ; Noise measurement ; Position measurement ; Signal distortion ; Signal strength ; Variational bayes adaptive Kalman filter ; Wireless access points</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2019-10, Vol.162, p.106864, Article 106864</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Sequoia S.A. Oct 24, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-41f20f89630483883d2cf3bb3f462c10fd1457bec6f28fd2a701eba2be8784d33</citedby><cites>FETCH-LOGICAL-c380t-41f20f89630483883d2cf3bb3f462c10fd1457bec6f28fd2a701eba2be8784d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2019.106864$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Bobai</creatorcontrib><creatorcontrib>Zhu, Dali</creatorcontrib><creatorcontrib>Xi, Tong</creatorcontrib><creatorcontrib>Jia, Chenggang</creatorcontrib><creatorcontrib>Jiang, Shang</creatorcontrib><creatorcontrib>Wang, Siye</creatorcontrib><title>Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Various research works have been proposed for Wi-Fi-based indoor localization, including Received Signal Strength Indicator (RSSI)-based fingerprint algorithm, Angle of Arrival (AoA)-based algorithm and so on. However, since RSSI value cannot accurately express the spatial features of emitted wireless signal, and the interfering noise in indoor environment makes the wireless signal distortion, RSSI-based localization algorithm cannot achieve an ideal accuracy. In this paper, we utilize Channel State Information (CSI) extracted from MIMO-OFDM PHY layer as fingerprint image to express the spatial and temporal features of Wi-Fi signal. At the same time, an indoor localization algorithm is also proposed, which is based on convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter, to achieve accurate position estimate with time-varying measurement noise and process noise in complex indoor environment. According to the simulation results, compared with existing methods, our proposed algorithm improves the positioning accuracy up to 51.8%. In the real indoor environment, our proposed algorithm improves the positioning accuracy up to 22% in LoS scenario, and 9.8% in NLoS scenario, respectively.</description><subject>Accuracy</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Angle of arrival</subject><subject>Artificial neural networks</subject><subject>Bayesian analysis</subject><subject>Channel State Information</subject><subject>Computer simulation</subject><subject>Convolution neural network</subject><subject>Fingerprints</subject><subject>Indoor environments</subject><subject>Indoor localization</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Position measurement</subject><subject>Signal distortion</subject><subject>Signal strength</subject><subject>Variational bayes adaptive Kalman filter</subject><subject>Wireless access points</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhpfQQlKn_yAHQc7r6su72kugNXUTEuglpUcxK42wnLXkSlqH9No_nnU2555mGN7nhXmq6orRJaOs-bJbmrgPWJacsm46NaqRZ9UFUy2vW9p0H6ZdqK5mXDXn1aecd5RSKbm6qP6tYzjGYSw-BhhIwDG9jfIc0xOBYIkdYagdmBITwbCFYNCSIyQP78w3eMFMwMKh-COSexj2EIjzQ8FEeshT3AcbJ3yIBgb_9w0kz75syW9fb_xl9dHBkPHz-1xUvzbfH9e39cPPH3frrw-1EYqWWjLHqVNdI6hUQilhuXGi74WTDTeMOsvkqu3RNI4rZzm0lGEPvEfVKmmFWFTXc-8hxT8j5qJ3cUzTC1lzwbqWte1qNaXknDIp5pzQ6UPye0gvmlF90q13etatT7r1rHvCbmYMpw-OHpPOxuNJlk9oirbR_7_gFSFBjRE</recordid><startdate>20191024</startdate><enddate>20191024</enddate><creator>Zhao, Bobai</creator><creator>Zhu, Dali</creator><creator>Xi, Tong</creator><creator>Jia, Chenggang</creator><creator>Jiang, Shang</creator><creator>Wang, Siye</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191024</creationdate><title>Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi</title><author>Zhao, Bobai ; Zhu, Dali ; Xi, Tong ; Jia, Chenggang ; Jiang, Shang ; Wang, Siye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-41f20f89630483883d2cf3bb3f462c10fd1457bec6f28fd2a701eba2be8784d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Angle of arrival</topic><topic>Artificial neural networks</topic><topic>Bayesian analysis</topic><topic>Channel State Information</topic><topic>Computer simulation</topic><topic>Convolution neural network</topic><topic>Fingerprints</topic><topic>Indoor environments</topic><topic>Indoor localization</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Position measurement</topic><topic>Signal distortion</topic><topic>Signal strength</topic><topic>Variational bayes adaptive Kalman filter</topic><topic>Wireless access points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bobai</creatorcontrib><creatorcontrib>Zhu, Dali</creatorcontrib><creatorcontrib>Xi, Tong</creatorcontrib><creatorcontrib>Jia, Chenggang</creatorcontrib><creatorcontrib>Jiang, Shang</creatorcontrib><creatorcontrib>Wang, Siye</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bobai</au><au>Zhu, Dali</au><au>Xi, Tong</au><au>Jia, Chenggang</au><au>Jiang, Shang</au><au>Wang, Siye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2019-10-24</date><risdate>2019</risdate><volume>162</volume><spage>106864</spage><pages>106864-</pages><artnum>106864</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Various research works have been proposed for Wi-Fi-based indoor localization, including Received Signal Strength Indicator (RSSI)-based fingerprint algorithm, Angle of Arrival (AoA)-based algorithm and so on. However, since RSSI value cannot accurately express the spatial features of emitted wireless signal, and the interfering noise in indoor environment makes the wireless signal distortion, RSSI-based localization algorithm cannot achieve an ideal accuracy. In this paper, we utilize Channel State Information (CSI) extracted from MIMO-OFDM PHY layer as fingerprint image to express the spatial and temporal features of Wi-Fi signal. At the same time, an indoor localization algorithm is also proposed, which is based on convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter, to achieve accurate position estimate with time-varying measurement noise and process noise in complex indoor environment. According to the simulation results, compared with existing methods, our proposed algorithm improves the positioning accuracy up to 51.8%. In the real indoor environment, our proposed algorithm improves the positioning accuracy up to 22% in LoS scenario, and 9.8% in NLoS scenario, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2019.106864</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2019-10, Vol.162, p.106864, Article 106864
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2319717755
source Elsevier ScienceDirect Journals Complete
subjects Accuracy
Adaptive filters
Algorithms
Angle of arrival
Artificial neural networks
Bayesian analysis
Channel State Information
Computer simulation
Convolution neural network
Fingerprints
Indoor environments
Indoor localization
Kalman filters
Localization
Neural networks
Noise
Noise measurement
Position measurement
Signal distortion
Signal strength
Variational bayes adaptive Kalman filter
Wireless access points
title Convolutional neural network and dual-factor enhanced variational Bayes adaptive Kalman filter based indoor localization with Wi-Fi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20neural%20network%20and%20dual-factor%20enhanced%20variational%20Bayes%20adaptive%20Kalman%20filter%20based%20indoor%20localization%20with%20Wi-Fi&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Zhao,%20Bobai&rft.date=2019-10-24&rft.volume=162&rft.spage=106864&rft.pages=106864-&rft.artnum=106864&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2019.106864&rft_dat=%3Cproquest_cross%3E2319717755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319717755&rft_id=info:pmid/&rft_els_id=S1389128618311691&rfr_iscdi=true