Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice
Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the v...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2019-12, Vol.12 (12), p.1001-1005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 12 |
container_start_page | 1001 |
container_title | Nature geoscience |
container_volume | 12 |
creator | Marzocchi, Alice Jansen, Malte F. |
description | Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO
2
concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO
2
on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO
2
drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO
2
drawdown. This provides an important step towards a consistent picture of glacial climates.
Isolation of deep water around Antarctica due to surface cooling can explain half of the change in atmospheric CO
2
levels through glacial–interglacial cycles, according to coupled ocean–sea ice and biogeochemical numerical modelling. |
doi_str_mv | 10.1038/s41561-019-0466-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319482729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319482729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-ae1e6803918d9772ccdcdc356f1ae8feb85dde89f6bbb7f1a6b50079649f30283</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkTfNxXBZdhQUvevESkjStWWuzJl3Bf29KFU8SmMwMz7zDvABcEnxNcCVvMiM1JwgThTDjHMkjsCCipggrLI9_c6nYKTjLeYcxx0zUC_Cy6aM1PXQx9mHoYAlvvoFjhGFwyZtciq43LkyMSTYOMI8xmc7Dz2CgezVD53OB4WoYTXJjcDB7A4Pz5-CkNX32Fz__Ejzf3T6t79H2cfOwXm2RYUyOyHjiucSVIrJRQlDnmvKqmrfEeNl6K-um8VK13ForSpPbGmOhOFNthamsluBq1t2n-HHwedS7eEhDWalpRRSTVFBVKDJTLsWck2_1PoV3k740wXqyUM8W6mKhnizUkzKdZ3Jhy53pT_n_oW80dHRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319482729</pqid></control><display><type>article</type><title>Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice</title><source>SpringerLink Journals</source><creator>Marzocchi, Alice ; Jansen, Malte F.</creator><creatorcontrib>Marzocchi, Alice ; Jansen, Malte F.</creatorcontrib><description>Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO
2
concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO
2
on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO
2
drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO
2
drawdown. This provides an important step towards a consistent picture of glacial climates.
Isolation of deep water around Antarctica due to surface cooling can explain half of the change in atmospheric CO
2
levels through glacial–interglacial cycles, according to coupled ocean–sea ice and biogeochemical numerical modelling.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0466-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; 704/47/4113 ; 704/829 ; Antarctic bottom water ; Antarctic sea ice ; Atmospheric circulation ; Atmospheric cooling ; Bottom water ; Carbon ; Carbon capture and storage ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon dioxide concentration ; Carbon sequestration ; Computer simulation ; Cooling ; Deep water ; Drawdown ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Gas exchange ; General circulation models ; Geochemistry ; Geology ; Geophysics/Geodesy ; Glacial climates ; Global cooling ; Ice cores ; Interglacial periods ; Mathematical analysis ; Mathematical models ; Numerical simulations ; Ocean circulation ; Ocean circulation patterns ; Ocean currents ; Ocean models ; Oceans ; Sea ice ; Sea surface ; Seawater ; Water circulation ; Water masses</subject><ispartof>Nature geoscience, 2019-12, Vol.12 (12), p.1001-1005</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-ae1e6803918d9772ccdcdc356f1ae8feb85dde89f6bbb7f1a6b50079649f30283</citedby><cites>FETCH-LOGICAL-a448t-ae1e6803918d9772ccdcdc356f1ae8feb85dde89f6bbb7f1a6b50079649f30283</cites><orcidid>0000-0002-3430-3574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-019-0466-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-019-0466-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marzocchi, Alice</creatorcontrib><creatorcontrib>Jansen, Malte F.</creatorcontrib><title>Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO
2
concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO
2
on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO
2
drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO
2
drawdown. This provides an important step towards a consistent picture of glacial climates.
Isolation of deep water around Antarctica due to surface cooling can explain half of the change in atmospheric CO
2
levels through glacial–interglacial cycles, according to coupled ocean–sea ice and biogeochemical numerical modelling.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>704/47/4113</subject><subject>704/829</subject><subject>Antarctic bottom water</subject><subject>Antarctic sea ice</subject><subject>Atmospheric circulation</subject><subject>Atmospheric cooling</subject><subject>Bottom water</subject><subject>Carbon</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Deep water</subject><subject>Drawdown</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Gas exchange</subject><subject>General circulation models</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Glacial climates</subject><subject>Global cooling</subject><subject>Ice cores</subject><subject>Interglacial periods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Ocean circulation</subject><subject>Ocean circulation patterns</subject><subject>Ocean currents</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Seawater</subject><subject>Water circulation</subject><subject>Water masses</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkTfNxXBZdhQUvevESkjStWWuzJl3Bf29KFU8SmMwMz7zDvABcEnxNcCVvMiM1JwgThTDjHMkjsCCipggrLI9_c6nYKTjLeYcxx0zUC_Cy6aM1PXQx9mHoYAlvvoFjhGFwyZtciq43LkyMSTYOMI8xmc7Dz2CgezVD53OB4WoYTXJjcDB7A4Pz5-CkNX32Fz__Ejzf3T6t79H2cfOwXm2RYUyOyHjiucSVIrJRQlDnmvKqmrfEeNl6K-um8VK13ForSpPbGmOhOFNthamsluBq1t2n-HHwedS7eEhDWalpRRSTVFBVKDJTLsWck2_1PoV3k740wXqyUM8W6mKhnizUkzKdZ3Jhy53pT_n_oW80dHRK</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Marzocchi, Alice</creator><creator>Jansen, Malte F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3430-3574</orcidid></search><sort><creationdate>20191201</creationdate><title>Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice</title><author>Marzocchi, Alice ; Jansen, Malte F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-ae1e6803918d9772ccdcdc356f1ae8feb85dde89f6bbb7f1a6b50079649f30283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>704/47/4113</topic><topic>704/829</topic><topic>Antarctic bottom water</topic><topic>Antarctic sea ice</topic><topic>Atmospheric circulation</topic><topic>Atmospheric cooling</topic><topic>Bottom water</topic><topic>Carbon</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Deep water</topic><topic>Drawdown</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Gas exchange</topic><topic>General circulation models</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Glacial climates</topic><topic>Global cooling</topic><topic>Ice cores</topic><topic>Interglacial periods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Ocean circulation</topic><topic>Ocean circulation patterns</topic><topic>Ocean currents</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Seawater</topic><topic>Water circulation</topic><topic>Water masses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzocchi, Alice</creatorcontrib><creatorcontrib>Jansen, Malte F.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzocchi, Alice</au><au>Jansen, Malte F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>12</volume><issue>12</issue><spage>1001</spage><epage>1005</epage><pages>1001-1005</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO
2
concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO
2
on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO
2
drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO
2
drawdown. This provides an important step towards a consistent picture of glacial climates.
Isolation of deep water around Antarctica due to surface cooling can explain half of the change in atmospheric CO
2
levels through glacial–interglacial cycles, according to coupled ocean–sea ice and biogeochemical numerical modelling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0466-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3430-3574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2019-12, Vol.12 (12), p.1001-1005 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2319482729 |
source | SpringerLink Journals |
subjects | 704/106/2738 704/106/413 704/47/4113 704/829 Antarctic bottom water Antarctic sea ice Atmospheric circulation Atmospheric cooling Bottom water Carbon Carbon capture and storage Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide concentration Carbon sequestration Computer simulation Cooling Deep water Drawdown Earth and Environmental Science Earth Sciences Earth System Sciences Gas exchange General circulation models Geochemistry Geology Geophysics/Geodesy Glacial climates Global cooling Ice cores Interglacial periods Mathematical analysis Mathematical models Numerical simulations Ocean circulation Ocean circulation patterns Ocean currents Ocean models Oceans Sea ice Sea surface Seawater Water circulation Water masses |
title | Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20cooling%20linked%20to%20increased%20glacial%20carbon%20storage%20via%20changes%20in%20Antarctic%20sea%20ice&rft.jtitle=Nature%20geoscience&rft.au=Marzocchi,%20Alice&rft.date=2019-12-01&rft.volume=12&rft.issue=12&rft.spage=1001&rft.epage=1005&rft.pages=1001-1005&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0466-8&rft_dat=%3Cproquest_cross%3E2319482729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319482729&rft_id=info:pmid/&rfr_iscdi=true |