Numerical solution of Fokker-Planck equation for single domain particles

The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2019-10, Vol.571, p.142-148
Hauptverfasser: Peskov, N.V., Semendyaeva, N.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue
container_start_page 142
container_title Physica. B, Condensed matter
container_volume 571
creator Peskov, N.V.
Semendyaeva, N.L.
description The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a different method to solve the Fokker-Planck equation, namely, the finite element method. We describe the procedure for constructing a triangular grid on the surface of a sphere and give formulas for calculating the coefficients of the equations for the probability density values at the grid nodes. As an example, the results of calculating the dynamic magnetic hysteresis for particles with cubic anisotropy are demonstrated. •The numerical solution of Brown's Fokker-Planck equation is obtained by the finite element method.•FEM implementation details are described.•The dynamic magnetic hysteresis of particles with cubic anisotropy is calculated by solving the Fokker-Planck equation.
doi_str_mv 10.1016/j.physb.2019.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319472499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452619304430</els_id><sourcerecordid>2319472499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b90bb511e83ce409b1e6fa0688988af80c182957d362126682ae498af676f98e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1giMSf47MSxBwZUUYpUAQPMluNcwG0at3aC1H9P2jJzyw3vvTu9j5BboBlQEPerbPu9j1XGKKiMlhml-RmZgCx5yoAX52RCFYM0L5i4JFcxrug4UMKELF6HDQZnTZtE3w69813im2Tu12sM6XtrOrtOcDeYo9L4kETXfbWY1H5jXJdsTeidbTFek4vGtBFv_vaUfM6fPmaLdPn2_DJ7XKaWc-jTStGqKgBQcos5VRWgaAwVUiopTSOpBclUUdZcMGBCSGYwV6MiStEoiXxK7k53t8HvBoy9XvkhdONLzTiovGS5UqOLn1w2-BgDNnob3MaEvQaqD8j0Sh-R6QMyTUs9IhtTD6cUjgV-HAYdrcPOYu0C2l7X3v2b_wUFanU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319472499</pqid></control><display><type>article</type><title>Numerical solution of Fokker-Planck equation for single domain particles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peskov, N.V. ; Semendyaeva, N.L.</creator><creatorcontrib>Peskov, N.V. ; Semendyaeva, N.L.</creatorcontrib><description>The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a different method to solve the Fokker-Planck equation, namely, the finite element method. We describe the procedure for constructing a triangular grid on the surface of a sphere and give formulas for calculating the coefficients of the equations for the probability density values at the grid nodes. As an example, the results of calculating the dynamic magnetic hysteresis for particles with cubic anisotropy are demonstrated. •The numerical solution of Brown's Fokker-Planck equation is obtained by the finite element method.•FEM implementation details are described.•The dynamic magnetic hysteresis of particles with cubic anisotropy is calculated by solving the Fokker-Planck equation.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2019.07.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Density ; Dynamic hysteresis ; Finite element method ; Finite element solution ; Fokker-Planck equation ; Harmonic analysis ; Hysteresis ; Magnetic moments ; Magnetism ; Numerical analysis ; Probability distribution ; Single domain particles ; Spherical harmonics</subject><ispartof>Physica. B, Condensed matter, 2019-10, Vol.571, p.142-148</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b90bb511e83ce409b1e6fa0688988af80c182957d362126682ae498af676f98e3</citedby><cites>FETCH-LOGICAL-c331t-b90bb511e83ce409b1e6fa0688988af80c182957d362126682ae498af676f98e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921452619304430$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Peskov, N.V.</creatorcontrib><creatorcontrib>Semendyaeva, N.L.</creatorcontrib><title>Numerical solution of Fokker-Planck equation for single domain particles</title><title>Physica. B, Condensed matter</title><description>The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a different method to solve the Fokker-Planck equation, namely, the finite element method. We describe the procedure for constructing a triangular grid on the surface of a sphere and give formulas for calculating the coefficients of the equations for the probability density values at the grid nodes. As an example, the results of calculating the dynamic magnetic hysteresis for particles with cubic anisotropy are demonstrated. •The numerical solution of Brown's Fokker-Planck equation is obtained by the finite element method.•FEM implementation details are described.•The dynamic magnetic hysteresis of particles with cubic anisotropy is calculated by solving the Fokker-Planck equation.</description><subject>Anisotropy</subject><subject>Density</subject><subject>Dynamic hysteresis</subject><subject>Finite element method</subject><subject>Finite element solution</subject><subject>Fokker-Planck equation</subject><subject>Harmonic analysis</subject><subject>Hysteresis</subject><subject>Magnetic moments</subject><subject>Magnetism</subject><subject>Numerical analysis</subject><subject>Probability distribution</subject><subject>Single domain particles</subject><subject>Spherical harmonics</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1giMSf47MSxBwZUUYpUAQPMluNcwG0at3aC1H9P2jJzyw3vvTu9j5BboBlQEPerbPu9j1XGKKiMlhml-RmZgCx5yoAX52RCFYM0L5i4JFcxrug4UMKELF6HDQZnTZtE3w69813im2Tu12sM6XtrOrtOcDeYo9L4kETXfbWY1H5jXJdsTeidbTFek4vGtBFv_vaUfM6fPmaLdPn2_DJ7XKaWc-jTStGqKgBQcos5VRWgaAwVUiopTSOpBclUUdZcMGBCSGYwV6MiStEoiXxK7k53t8HvBoy9XvkhdONLzTiovGS5UqOLn1w2-BgDNnob3MaEvQaqD8j0Sh-R6QMyTUs9IhtTD6cUjgV-HAYdrcPOYu0C2l7X3v2b_wUFanU_</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Peskov, N.V.</creator><creator>Semendyaeva, N.L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20191015</creationdate><title>Numerical solution of Fokker-Planck equation for single domain particles</title><author>Peskov, N.V. ; Semendyaeva, N.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b90bb511e83ce409b1e6fa0688988af80c182957d362126682ae498af676f98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Density</topic><topic>Dynamic hysteresis</topic><topic>Finite element method</topic><topic>Finite element solution</topic><topic>Fokker-Planck equation</topic><topic>Harmonic analysis</topic><topic>Hysteresis</topic><topic>Magnetic moments</topic><topic>Magnetism</topic><topic>Numerical analysis</topic><topic>Probability distribution</topic><topic>Single domain particles</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peskov, N.V.</creatorcontrib><creatorcontrib>Semendyaeva, N.L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peskov, N.V.</au><au>Semendyaeva, N.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of Fokker-Planck equation for single domain particles</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>571</volume><spage>142</spage><epage>148</epage><pages>142-148</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The Fokker-Planck equation proposed by Brown to describe the evolution of the probability distribution density of the orientation of the magnetic moment of a single-domain particle is usually solved by expanding the unknown function in a series of spherical harmonics. In this paper, we use a different method to solve the Fokker-Planck equation, namely, the finite element method. We describe the procedure for constructing a triangular grid on the surface of a sphere and give formulas for calculating the coefficients of the equations for the probability density values at the grid nodes. As an example, the results of calculating the dynamic magnetic hysteresis for particles with cubic anisotropy are demonstrated. •The numerical solution of Brown's Fokker-Planck equation is obtained by the finite element method.•FEM implementation details are described.•The dynamic magnetic hysteresis of particles with cubic anisotropy is calculated by solving the Fokker-Planck equation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2019.07.004</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2019-10, Vol.571, p.142-148
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2319472499
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Density
Dynamic hysteresis
Finite element method
Finite element solution
Fokker-Planck equation
Harmonic analysis
Hysteresis
Magnetic moments
Magnetism
Numerical analysis
Probability distribution
Single domain particles
Spherical harmonics
title Numerical solution of Fokker-Planck equation for single domain particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20Fokker-Planck%20equation%20for%20single%20domain%20particles&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Peskov,%20N.V.&rft.date=2019-10-15&rft.volume=571&rft.spage=142&rft.epage=148&rft.pages=142-148&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2019.07.004&rft_dat=%3Cproquest_cross%3E2319472499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319472499&rft_id=info:pmid/&rft_els_id=S0921452619304430&rfr_iscdi=true