Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications

The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethyle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reactive & functional polymers 2019-11, Vol.144, p.104353, Article 104353
Hauptverfasser: Russell, Bethany K., Takeda, Shinji, Ward, Carwyn, Hamerton, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104353
container_title Reactive & functional polymers
container_volume 144
creator Russell, Bethany K.
Takeda, Shinji
Ward, Carwyn
Hamerton, Ian
description The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.
doi_str_mv 10.1016/j.reactfunctpolym.2019.104353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319169342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1381514819304262</els_id><sourcerecordid>2319169342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</originalsourceid><addsrcrecordid>eNqNkc9O3DAQxiNUJCjlHSxVHLO14_xxDj0gRKESUi-t1JvlTMasl1072A5lX4cnZbLbU0892dZ8329m_BXFleArwUX7ZbOKaCDb2UOewna_W1Vc9FSrZSNPinOhOlmKtv39ge5SibIRtTorPqa04Vx0VDkv3m5fzc555x9ZXiNz3m5n9IAsWAYmDuF1v3XAjF_vx-hGZCnHGfIcMbHgD57DEI4eT85jdpBIPbIpBsCUFjCsTSQJRpcOZUIbz3AiNplJwmyI7I8jF4EHojAzTdTWLNj0qTi1Zpvw8u95Ufz6dvvz5r58-HH3_eb6oYRaVbkEjpzbqjdq6MVgrbRdL7kQWCmoukbZ1jQDgOIGqr6p-9a0plNcSINdqyTKi-LzkUujP8-Yst6EOXpqqSspetH2sq5I9fWoghhSimj1FN3OxL0WXC-x6I3-Jxa9xKKPsZD_7uhHWuXFYdQJ3PLjo4sIWY_B_SfpHQy8pTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319169342</pqid></control><display><type>article</type><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><source>Elsevier ScienceDirect Journals</source><creator>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</creator><creatorcontrib>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</creatorcontrib><description>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</description><identifier>ISSN: 1381-5148</identifier><identifier>EISSN: 1873-166X</identifier><identifier>DOI: 10.1016/j.reactfunctpolym.2019.104353</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anhydrides ; Bisphenol A ; Chemicals ; Epoxy resins ; Gelation ; Glass transition temperature ; Kinetics ; Low molecular weights ; Mixtures ; Molecular weight ; Rate constants ; Reaction kinetics ; Rheology ; Thermal analysis ; Thermal stability ; Wind turbines</subject><ispartof>Reactive &amp; functional polymers, 2019-11, Vol.144, p.104353, Article 104353</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</citedby><cites>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1381514819304262$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Russell, Bethany K.</creatorcontrib><creatorcontrib>Takeda, Shinji</creatorcontrib><creatorcontrib>Ward, Carwyn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><title>Reactive &amp; functional polymers</title><description>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</description><subject>Anhydrides</subject><subject>Bisphenol A</subject><subject>Chemicals</subject><subject>Epoxy resins</subject><subject>Gelation</subject><subject>Glass transition temperature</subject><subject>Kinetics</subject><subject>Low molecular weights</subject><subject>Mixtures</subject><subject>Molecular weight</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Rheology</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Wind turbines</subject><issn>1381-5148</issn><issn>1873-166X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc9O3DAQxiNUJCjlHSxVHLO14_xxDj0gRKESUi-t1JvlTMasl1072A5lX4cnZbLbU0892dZ8329m_BXFleArwUX7ZbOKaCDb2UOewna_W1Vc9FSrZSNPinOhOlmKtv39ge5SibIRtTorPqa04Vx0VDkv3m5fzc555x9ZXiNz3m5n9IAsWAYmDuF1v3XAjF_vx-hGZCnHGfIcMbHgD57DEI4eT85jdpBIPbIpBsCUFjCsTSQJRpcOZUIbz3AiNplJwmyI7I8jF4EHojAzTdTWLNj0qTi1Zpvw8u95Ufz6dvvz5r58-HH3_eb6oYRaVbkEjpzbqjdq6MVgrbRdL7kQWCmoukbZ1jQDgOIGqr6p-9a0plNcSINdqyTKi-LzkUujP8-Yst6EOXpqqSspetH2sq5I9fWoghhSimj1FN3OxL0WXC-x6I3-Jxa9xKKPsZD_7uhHWuXFYdQJ3PLjo4sIWY_B_SfpHQy8pTs</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Russell, Bethany K.</creator><creator>Takeda, Shinji</creator><creator>Ward, Carwyn</creator><creator>Hamerton, Ian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201911</creationdate><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><author>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anhydrides</topic><topic>Bisphenol A</topic><topic>Chemicals</topic><topic>Epoxy resins</topic><topic>Gelation</topic><topic>Glass transition temperature</topic><topic>Kinetics</topic><topic>Low molecular weights</topic><topic>Mixtures</topic><topic>Molecular weight</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Rheology</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Bethany K.</creatorcontrib><creatorcontrib>Takeda, Shinji</creatorcontrib><creatorcontrib>Ward, Carwyn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Reactive &amp; functional polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Bethany K.</au><au>Takeda, Shinji</au><au>Ward, Carwyn</au><au>Hamerton, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</atitle><jtitle>Reactive &amp; functional polymers</jtitle><date>2019-11</date><risdate>2019</risdate><volume>144</volume><spage>104353</spage><pages>104353-</pages><artnum>104353</artnum><issn>1381-5148</issn><eissn>1873-166X</eissn><abstract>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.reactfunctpolym.2019.104353</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1381-5148
ispartof Reactive & functional polymers, 2019-11, Vol.144, p.104353, Article 104353
issn 1381-5148
1873-166X
language eng
recordid cdi_proquest_journals_2319169342
source Elsevier ScienceDirect Journals
subjects Anhydrides
Bisphenol A
Chemicals
Epoxy resins
Gelation
Glass transition temperature
Kinetics
Low molecular weights
Mixtures
Molecular weight
Rate constants
Reaction kinetics
Rheology
Thermal analysis
Thermal stability
Wind turbines
title Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20influence%20of%20carboxylic%20anhydride%20structures%20on%20the%20reaction%20kinetics%20and%20processing%20characteristics%20of%20an%20epoxy%20resin%20for%20wind%20turbine%20applications&rft.jtitle=Reactive%20&%20functional%20polymers&rft.au=Russell,%20Bethany%20K.&rft.date=2019-11&rft.volume=144&rft.spage=104353&rft.pages=104353-&rft.artnum=104353&rft.issn=1381-5148&rft.eissn=1873-166X&rft_id=info:doi/10.1016/j.reactfunctpolym.2019.104353&rft_dat=%3Cproquest_cross%3E2319169342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319169342&rft_id=info:pmid/&rft_els_id=S1381514819304262&rfr_iscdi=true