Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications
The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethyle...
Gespeichert in:
Veröffentlicht in: | Reactive & functional polymers 2019-11, Vol.144, p.104353, Article 104353 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104353 |
container_title | Reactive & functional polymers |
container_volume | 144 |
creator | Russell, Bethany K. Takeda, Shinji Ward, Carwyn Hamerton, Ian |
description | The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied. |
doi_str_mv | 10.1016/j.reactfunctpolym.2019.104353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319169342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1381514819304262</els_id><sourcerecordid>2319169342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</originalsourceid><addsrcrecordid>eNqNkc9O3DAQxiNUJCjlHSxVHLO14_xxDj0gRKESUi-t1JvlTMasl1072A5lX4cnZbLbU0892dZ8329m_BXFleArwUX7ZbOKaCDb2UOewna_W1Vc9FSrZSNPinOhOlmKtv39ge5SibIRtTorPqa04Vx0VDkv3m5fzc555x9ZXiNz3m5n9IAsWAYmDuF1v3XAjF_vx-hGZCnHGfIcMbHgD57DEI4eT85jdpBIPbIpBsCUFjCsTSQJRpcOZUIbz3AiNplJwmyI7I8jF4EHojAzTdTWLNj0qTi1Zpvw8u95Ufz6dvvz5r58-HH3_eb6oYRaVbkEjpzbqjdq6MVgrbRdL7kQWCmoukbZ1jQDgOIGqr6p-9a0plNcSINdqyTKi-LzkUujP8-Yst6EOXpqqSspetH2sq5I9fWoghhSimj1FN3OxL0WXC-x6I3-Jxa9xKKPsZD_7uhHWuXFYdQJ3PLjo4sIWY_B_SfpHQy8pTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319169342</pqid></control><display><type>article</type><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><source>Elsevier ScienceDirect Journals</source><creator>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</creator><creatorcontrib>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</creatorcontrib><description>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</description><identifier>ISSN: 1381-5148</identifier><identifier>EISSN: 1873-166X</identifier><identifier>DOI: 10.1016/j.reactfunctpolym.2019.104353</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anhydrides ; Bisphenol A ; Chemicals ; Epoxy resins ; Gelation ; Glass transition temperature ; Kinetics ; Low molecular weights ; Mixtures ; Molecular weight ; Rate constants ; Reaction kinetics ; Rheology ; Thermal analysis ; Thermal stability ; Wind turbines</subject><ispartof>Reactive & functional polymers, 2019-11, Vol.144, p.104353, Article 104353</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</citedby><cites>FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1381514819304262$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Russell, Bethany K.</creatorcontrib><creatorcontrib>Takeda, Shinji</creatorcontrib><creatorcontrib>Ward, Carwyn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><title>Reactive & functional polymers</title><description>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</description><subject>Anhydrides</subject><subject>Bisphenol A</subject><subject>Chemicals</subject><subject>Epoxy resins</subject><subject>Gelation</subject><subject>Glass transition temperature</subject><subject>Kinetics</subject><subject>Low molecular weights</subject><subject>Mixtures</subject><subject>Molecular weight</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Rheology</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Wind turbines</subject><issn>1381-5148</issn><issn>1873-166X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc9O3DAQxiNUJCjlHSxVHLO14_xxDj0gRKESUi-t1JvlTMasl1072A5lX4cnZbLbU0892dZ8329m_BXFleArwUX7ZbOKaCDb2UOewna_W1Vc9FSrZSNPinOhOlmKtv39ge5SibIRtTorPqa04Vx0VDkv3m5fzc555x9ZXiNz3m5n9IAsWAYmDuF1v3XAjF_vx-hGZCnHGfIcMbHgD57DEI4eT85jdpBIPbIpBsCUFjCsTSQJRpcOZUIbz3AiNplJwmyI7I8jF4EHojAzTdTWLNj0qTi1Zpvw8u95Ufz6dvvz5r58-HH3_eb6oYRaVbkEjpzbqjdq6MVgrbRdL7kQWCmoukbZ1jQDgOIGqr6p-9a0plNcSINdqyTKi-LzkUujP8-Yst6EOXpqqSspetH2sq5I9fWoghhSimj1FN3OxL0WXC-x6I3-Jxa9xKKPsZD_7uhHWuXFYdQJ3PLjo4sIWY_B_SfpHQy8pTs</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Russell, Bethany K.</creator><creator>Takeda, Shinji</creator><creator>Ward, Carwyn</creator><creator>Hamerton, Ian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201911</creationdate><title>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</title><author>Russell, Bethany K. ; Takeda, Shinji ; Ward, Carwyn ; Hamerton, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-c0e00f29a8b91bff3f793011e28c2758f6a5bcc80ac295496a6a78013ae7683e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anhydrides</topic><topic>Bisphenol A</topic><topic>Chemicals</topic><topic>Epoxy resins</topic><topic>Gelation</topic><topic>Glass transition temperature</topic><topic>Kinetics</topic><topic>Low molecular weights</topic><topic>Mixtures</topic><topic>Molecular weight</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Rheology</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Bethany K.</creatorcontrib><creatorcontrib>Takeda, Shinji</creatorcontrib><creatorcontrib>Ward, Carwyn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Reactive & functional polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Bethany K.</au><au>Takeda, Shinji</au><au>Ward, Carwyn</au><au>Hamerton, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications</atitle><jtitle>Reactive & functional polymers</jtitle><date>2019-11</date><risdate>2019</risdate><volume>144</volume><spage>104353</spage><pages>104353-</pages><artnum>104353</artnum><issn>1381-5148</issn><eissn>1873-166X</eissn><abstract>The cure of a low molecular weight (approximate EEW = 184 g/mol), difunctional epoxy resin based on bisphenol A has been studied in the presence of three carboxylic anhydrides: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3- or 4-methyl-hexahydrophthalic anhydride, and methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, and a tertiary amine (Ancamine K54). The formulated blends display complex viscosities ranging from 36 to 58 mPa.s and at 75 °C, the blends take between 56 and 73 min to reach gelation, with the highest viscosity and longest gel time observed for the blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride. Rate constants of 6.8 to 14 s−1 at 75 °C and activation energies of 69 to 78 kJ/mol are determined using dynamic differential scanning calorimetry. Glass transition temperatures for the cured blends are similar, at 100 °C, with conversions of 83 to 89% observed. The cured blend containing methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride displays the poorest thermal stability in terms of the onset of degradation, while yielding the highest char yield of the blends studied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.reactfunctpolym.2019.104353</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-5148 |
ispartof | Reactive & functional polymers, 2019-11, Vol.144, p.104353, Article 104353 |
issn | 1381-5148 1873-166X |
language | eng |
recordid | cdi_proquest_journals_2319169342 |
source | Elsevier ScienceDirect Journals |
subjects | Anhydrides Bisphenol A Chemicals Epoxy resins Gelation Glass transition temperature Kinetics Low molecular weights Mixtures Molecular weight Rate constants Reaction kinetics Rheology Thermal analysis Thermal stability Wind turbines |
title | Examining the influence of carboxylic anhydride structures on the reaction kinetics and processing characteristics of an epoxy resin for wind turbine applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20influence%20of%20carboxylic%20anhydride%20structures%20on%20the%20reaction%20kinetics%20and%20processing%20characteristics%20of%20an%20epoxy%20resin%20for%20wind%20turbine%20applications&rft.jtitle=Reactive%20&%20functional%20polymers&rft.au=Russell,%20Bethany%20K.&rft.date=2019-11&rft.volume=144&rft.spage=104353&rft.pages=104353-&rft.artnum=104353&rft.issn=1381-5148&rft.eissn=1873-166X&rft_id=info:doi/10.1016/j.reactfunctpolym.2019.104353&rft_dat=%3Cproquest_cross%3E2319169342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319169342&rft_id=info:pmid/&rft_els_id=S1381514819304262&rfr_iscdi=true |