Self-similar Elastic Condition of Filtration Through the Moving Boundary

We consider the one-dimensional problem of the elastic filtration of a fluid though the moving boundary. The boundary conditions are introduced so that the problem be invariant. The invariant problem is reduced to a overdetermine boundary task for the Weber equation. Exact solutions are found. The a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2019-11, Vol.40 (11), p.1950-1958
Hauptverfasser: Khabirov, S. V., Khabirov, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 11
container_start_page 1950
container_title Lobachevskii journal of mathematics
container_volume 40
creator Khabirov, S. V.
Khabirov, S. S.
description We consider the one-dimensional problem of the elastic filtration of a fluid though the moving boundary. The boundary conditions are introduced so that the problem be invariant. The invariant problem is reduced to a overdetermine boundary task for the Weber equation. Exact solutions are found. The asymptotic of a solution in infinite point determines the invariant law of a filtration according to the given boundary conditions. There is a connection between overdetermine invariant boundary conditions for any invariant law of a filtration.
doi_str_mv 10.1134/S1995080219110167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2318812069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318812069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-72603c74eb730837d8b703ffb5dd464b0ceaed2c74000992c5991c6721e27c273</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhF4lywky5_jjBtDAnEYeNctWm6ZeqakbRIfHsyhsQBcbKt93u29Qi5RrhF5PndErWegAKGGhFQyBMyQoUq01qw09QnOTvo5-Qixi0AY0KIEVksbdtk0e1cWwY6a8vYO0Onvqtd73xHfUPnru1D-T2tNsEP6w3tN5a--A_XremDH7q6DJ-X5Kwp22ivfuqYvM1nq-kie359fJreP2eGCdVnkgngRua2khwUl7WqJPCmqSZ1nYu8AmNLW7NEAIDWzEy0RiMkQ8ukYZKPyc1x7z7498HGvtj6IXTpZME4KoUMhE4UHikTfIzBNsU-uF16s0AoDoEVfwJLHnb0xMR2axt-N_9v-gIMR2tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318812069</pqid></control><display><type>article</type><title>Self-similar Elastic Condition of Filtration Through the Moving Boundary</title><source>Springer Nature - Complete Springer Journals</source><creator>Khabirov, S. V. ; Khabirov, S. S.</creator><creatorcontrib>Khabirov, S. V. ; Khabirov, S. S.</creatorcontrib><description>We consider the one-dimensional problem of the elastic filtration of a fluid though the moving boundary. The boundary conditions are introduced so that the problem be invariant. The invariant problem is reduced to a overdetermine boundary task for the Weber equation. Exact solutions are found. The asymptotic of a solution in infinite point determines the invariant law of a filtration according to the given boundary conditions. There is a connection between overdetermine invariant boundary conditions for any invariant law of a filtration.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080219110167</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Boundary conditions ; Filtration ; Geometry ; Invariants ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Self-similarity</subject><ispartof>Lobachevskii journal of mathematics, 2019-11, Vol.40 (11), p.1950-1958</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-72603c74eb730837d8b703ffb5dd464b0ceaed2c74000992c5991c6721e27c273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080219110167$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080219110167$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Khabirov, S. V.</creatorcontrib><creatorcontrib>Khabirov, S. S.</creatorcontrib><title>Self-similar Elastic Condition of Filtration Through the Moving Boundary</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider the one-dimensional problem of the elastic filtration of a fluid though the moving boundary. The boundary conditions are introduced so that the problem be invariant. The invariant problem is reduced to a overdetermine boundary task for the Weber equation. Exact solutions are found. The asymptotic of a solution in infinite point determines the invariant law of a filtration according to the given boundary conditions. There is a connection between overdetermine invariant boundary conditions for any invariant law of a filtration.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Filtration</subject><subject>Geometry</subject><subject>Invariants</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Self-similarity</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEmPwAbhF4lywky5_jjBtDAnEYeNctWm6ZeqakbRIfHsyhsQBcbKt93u29Qi5RrhF5PndErWegAKGGhFQyBMyQoUq01qw09QnOTvo5-Qixi0AY0KIEVksbdtk0e1cWwY6a8vYO0Onvqtd73xHfUPnru1D-T2tNsEP6w3tN5a--A_XremDH7q6DJ-X5Kwp22ivfuqYvM1nq-kie359fJreP2eGCdVnkgngRua2khwUl7WqJPCmqSZ1nYu8AmNLW7NEAIDWzEy0RiMkQ8ukYZKPyc1x7z7498HGvtj6IXTpZME4KoUMhE4UHikTfIzBNsU-uF16s0AoDoEVfwJLHnb0xMR2axt-N_9v-gIMR2tw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Khabirov, S. V.</creator><creator>Khabirov, S. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Self-similar Elastic Condition of Filtration Through the Moving Boundary</title><author>Khabirov, S. V. ; Khabirov, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-72603c74eb730837d8b703ffb5dd464b0ceaed2c74000992c5991c6721e27c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Filtration</topic><topic>Geometry</topic><topic>Invariants</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khabirov, S. V.</creatorcontrib><creatorcontrib>Khabirov, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khabirov, S. V.</au><au>Khabirov, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar Elastic Condition of Filtration Through the Moving Boundary</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>40</volume><issue>11</issue><spage>1950</spage><epage>1958</epage><pages>1950-1958</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider the one-dimensional problem of the elastic filtration of a fluid though the moving boundary. The boundary conditions are introduced so that the problem be invariant. The invariant problem is reduced to a overdetermine boundary task for the Weber equation. Exact solutions are found. The asymptotic of a solution in infinite point determines the invariant law of a filtration according to the given boundary conditions. There is a connection between overdetermine invariant boundary conditions for any invariant law of a filtration.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080219110167</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2019-11, Vol.40 (11), p.1950-1958
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2318812069
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Boundary conditions
Filtration
Geometry
Invariants
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Self-similarity
title Self-similar Elastic Condition of Filtration Through the Moving Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20Elastic%20Condition%20of%20Filtration%20Through%20the%20Moving%20Boundary&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Khabirov,%20S.%20V.&rft.date=2019-11-01&rft.volume=40&rft.issue=11&rft.spage=1950&rft.epage=1958&rft.pages=1950-1958&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080219110167&rft_dat=%3Cproquest_cross%3E2318812069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318812069&rft_id=info:pmid/&rfr_iscdi=true