ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems

Reinforcement Learning (RL) has achieved state-of-the-art results in domains such as robotics and games. We build on this previous work by applying RL algorithms to a selection of canonical online stochastic optimization problems with a range of practical applications: Bin Packing, Newsvendor, and V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Bharathan Balaji, Bell-Masterson, Jordan, Bilgin, Enes, Damianou, Andreas, Pablo Moreno Garcia, Jain, Arpit, Luo, Runfei, Maggiar, Alvaro, Balakrishnan Narayanaswamy, Ye, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!