Visible-light-promoted oxidative halogenation of alkynes

In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation. Related natural molecules have been studied for decades. In recent years, their diversified vital activities have been explored for treating various diseases, which call for efficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2019-11, Vol.55 (95), p.14299-1432
Hauptverfasser: Li, Yiming, Mou, Tao, Lu, Lingling, Jiang, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1432
container_issue 95
container_start_page 14299
container_title Chemical communications (Cambridge, England)
container_volume 55
creator Li, Yiming
Mou, Tao
Lu, Lingling
Jiang, Xuefeng
description In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation. Related natural molecules have been studied for decades. In recent years, their diversified vital activities have been explored for treating various diseases, which call for efficient and divergent synthetic strategies to facilitate drug discovery. Here we report a catalyst-free oxidative halogenation achieved under ambient conditions (halide ion, air, water, visible light, room temperature, and normal pressure). Constitutionally, electron transfer between the oxygen and halide ion is shuttled via simple conjugated molecules, in which phenylacetylene works as both reactant and catalyst. Synthetically, it provides a highly compatible late-stage transformation strategy to build up dihaloacetophenones (DHAPs). In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation.
doi_str_mv 10.1039/c9cc07655g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2317828084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314010152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-af2bef32e8313e0416c1e29c25b1df2d42fd945e9c1ced06a2dddeb0ed978e9b3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oWIFxGi-5nsHiVoFQpeVLyFze5sm5pmazYR-9-7taLgwbnMDO_H8OYhdEzwJcFMXRllDM4zIWY7aERYxlPB5cvuZhYqzRkX--gghAWORYQcIflch7pqIG3q2bxPV51f-h5s4j9qq_v6HZK5bvwM2rj4NvEu0c3ruoVwiPacbgIcffcxerq9eSzu0unD5L64nqaG46xPtaMVOEZBMsIAc5IZAlQZKipiHbWcOqu4AGWIAYszTa21UGGwKpegKjZG59u70drbAKEvl3Uw0DS6BT-EkjLCMYnP0Iie_UEXfuja6G5D5ZJKLHmkLraU6XwIHbhy1dVL3a1LgstNiGWhiuIrxEmET7ZwF8wP9xty1E__08uVdewTOX157w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317828084</pqid></control><display><type>article</type><title>Visible-light-promoted oxidative halogenation of alkynes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Yiming ; Mou, Tao ; Lu, Lingling ; Jiang, Xuefeng</creator><creatorcontrib>Li, Yiming ; Mou, Tao ; Lu, Lingling ; Jiang, Xuefeng</creatorcontrib><description>In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation. Related natural molecules have been studied for decades. In recent years, their diversified vital activities have been explored for treating various diseases, which call for efficient and divergent synthetic strategies to facilitate drug discovery. Here we report a catalyst-free oxidative halogenation achieved under ambient conditions (halide ion, air, water, visible light, room temperature, and normal pressure). Constitutionally, electron transfer between the oxygen and halide ion is shuttled via simple conjugated molecules, in which phenylacetylene works as both reactant and catalyst. Synthetically, it provides a highly compatible late-stage transformation strategy to build up dihaloacetophenones (DHAPs). In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c9cc07655g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkynes ; Biological activity ; Catalysts ; Crystallography ; Electron transfer ; Halogenation ; Metabolites ; Room temperature</subject><ispartof>Chemical communications (Cambridge, England), 2019-11, Vol.55 (95), p.14299-1432</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-af2bef32e8313e0416c1e29c25b1df2d42fd945e9c1ced06a2dddeb0ed978e9b3</citedby><cites>FETCH-LOGICAL-c406t-af2bef32e8313e0416c1e29c25b1df2d42fd945e9c1ced06a2dddeb0ed978e9b3</cites><orcidid>0000-0002-1849-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Mou, Tao</creatorcontrib><creatorcontrib>Lu, Lingling</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><title>Visible-light-promoted oxidative halogenation of alkynes</title><title>Chemical communications (Cambridge, England)</title><description>In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation. Related natural molecules have been studied for decades. In recent years, their diversified vital activities have been explored for treating various diseases, which call for efficient and divergent synthetic strategies to facilitate drug discovery. Here we report a catalyst-free oxidative halogenation achieved under ambient conditions (halide ion, air, water, visible light, room temperature, and normal pressure). Constitutionally, electron transfer between the oxygen and halide ion is shuttled via simple conjugated molecules, in which phenylacetylene works as both reactant and catalyst. Synthetically, it provides a highly compatible late-stage transformation strategy to build up dihaloacetophenones (DHAPs). In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation.</description><subject>Alkynes</subject><subject>Biological activity</subject><subject>Catalysts</subject><subject>Crystallography</subject><subject>Electron transfer</subject><subject>Halogenation</subject><subject>Metabolites</subject><subject>Room temperature</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv3oWIFxGi-5nsHiVoFQpeVLyFze5sm5pmazYR-9-7taLgwbnMDO_H8OYhdEzwJcFMXRllDM4zIWY7aERYxlPB5cvuZhYqzRkX--gghAWORYQcIflch7pqIG3q2bxPV51f-h5s4j9qq_v6HZK5bvwM2rj4NvEu0c3ruoVwiPacbgIcffcxerq9eSzu0unD5L64nqaG46xPtaMVOEZBMsIAc5IZAlQZKipiHbWcOqu4AGWIAYszTa21UGGwKpegKjZG59u70drbAKEvl3Uw0DS6BT-EkjLCMYnP0Iie_UEXfuja6G5D5ZJKLHmkLraU6XwIHbhy1dVL3a1LgstNiGWhiuIrxEmET7ZwF8wP9xty1E__08uVdewTOX157w</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Li, Yiming</creator><creator>Mou, Tao</creator><creator>Lu, Lingling</creator><creator>Jiang, Xuefeng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1849-6572</orcidid></search><sort><creationdate>20191126</creationdate><title>Visible-light-promoted oxidative halogenation of alkynes</title><author>Li, Yiming ; Mou, Tao ; Lu, Lingling ; Jiang, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-af2bef32e8313e0416c1e29c25b1df2d42fd945e9c1ced06a2dddeb0ed978e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkynes</topic><topic>Biological activity</topic><topic>Catalysts</topic><topic>Crystallography</topic><topic>Electron transfer</topic><topic>Halogenation</topic><topic>Metabolites</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Mou, Tao</creatorcontrib><creatorcontrib>Lu, Lingling</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiming</au><au>Mou, Tao</au><au>Lu, Lingling</au><au>Jiang, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-light-promoted oxidative halogenation of alkynes</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><date>2019-11-26</date><risdate>2019</risdate><volume>55</volume><issue>95</issue><spage>14299</spage><epage>1432</epage><pages>14299-1432</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation. Related natural molecules have been studied for decades. In recent years, their diversified vital activities have been explored for treating various diseases, which call for efficient and divergent synthetic strategies to facilitate drug discovery. Here we report a catalyst-free oxidative halogenation achieved under ambient conditions (halide ion, air, water, visible light, room temperature, and normal pressure). Constitutionally, electron transfer between the oxygen and halide ion is shuttled via simple conjugated molecules, in which phenylacetylene works as both reactant and catalyst. Synthetically, it provides a highly compatible late-stage transformation strategy to build up dihaloacetophenones (DHAPs). In nature, halogenation promotes the biological activity of secondary metabolites, especially geminal dihalogenation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cc07655g</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1849-6572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2019-11, Vol.55 (95), p.14299-1432
issn 1359-7345
1364-548X
language eng
recordid cdi_proquest_journals_2317828084
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alkynes
Biological activity
Catalysts
Crystallography
Electron transfer
Halogenation
Metabolites
Room temperature
title Visible-light-promoted oxidative halogenation of alkynes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-light-promoted%20oxidative%20halogenation%20of%20alkynes&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Li,%20Yiming&rft.date=2019-11-26&rft.volume=55&rft.issue=95&rft.spage=14299&rft.epage=1432&rft.pages=14299-1432&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c9cc07655g&rft_dat=%3Cproquest_cross%3E2314010152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317828084&rft_id=info:pmid/&rfr_iscdi=true