Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds
This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for t...
Gespeichert in:
Veröffentlicht in: | Applied economics 2020-01, Vol.52 (2), p.156-174 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 156 |
container_title | Applied economics |
container_volume | 52 |
creator | Zuehlke, Thomas W. |
description | This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample. |
doi_str_mv | 10.1080/00036846.2019.1638498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2317808013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317808013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9CSYknrcusMuyN7WpH0kTL_VM2F2w6JZRoGnrr5e1Nd48AJnkeWeGB6FLkk9ILvLrPM8ZFwWf0JzUE8KZKGpxhEak4DwrqGDHaDQw2QCdorMQ3lJJKKtGyM1CtCsVLTgMBiu82EA2tysb8QKadK-g0z3e2LjEr9ppr3r7pTt8B9tsClscvXLBgD-0UK7Da_fuYONwq10Ab90rjkuvwxL6LpyjE6P6oC8O7xi93M8W08ds_vzwNL2dZ23aN2aalFVrVMcbWnDW8JpppRpVloJRY4paN-1wWiF0VQnR1IIbUXRVaajqRPrqGF3t-354-FzrEOUbrL1LIyVlpBJJG2GJKvdU6yEEr4388EmG30mSy0Gt_FUrB7XyoDbl8D6nW3A2_KV4XdCa0J8FbvaIdT92NuD7Tka168Gb5KxNMfb_lG-4gIyF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317808013</pqid></control><display><type>article</type><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><source>Business Source Complete (BSC) 商管财经类全文数据库(完整版)</source><creator>Zuehlke, Thomas W.</creator><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><description>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2019.1638498</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Bickel-Doksum ; Box-Cox ; censoring threshold ; Economic analysis ; Economic models ; Economic theory ; Estimating techniques ; Flexibility ; Maximum likelihood method ; Thresholds ; Transformation ; Two-Limit Tobit</subject><ispartof>Applied economics, 2020-01, Vol.52 (2), p.156-174</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</citedby><cites>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><title>Applied economics</title><description>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</description><subject>Bickel-Doksum</subject><subject>Box-Cox</subject><subject>censoring threshold</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Flexibility</subject><subject>Maximum likelihood method</subject><subject>Thresholds</subject><subject>Transformation</subject><subject>Two-Limit Tobit</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9CSYknrcusMuyN7WpH0kTL_VM2F2w6JZRoGnrr5e1Nd48AJnkeWeGB6FLkk9ILvLrPM8ZFwWf0JzUE8KZKGpxhEak4DwrqGDHaDQw2QCdorMQ3lJJKKtGyM1CtCsVLTgMBiu82EA2tysb8QKadK-g0z3e2LjEr9ppr3r7pTt8B9tsClscvXLBgD-0UK7Da_fuYONwq10Ab90rjkuvwxL6LpyjE6P6oC8O7xi93M8W08ds_vzwNL2dZ23aN2aalFVrVMcbWnDW8JpppRpVloJRY4paN-1wWiF0VQnR1IIbUXRVaajqRPrqGF3t-354-FzrEOUbrL1LIyVlpBJJG2GJKvdU6yEEr4388EmG30mSy0Gt_FUrB7XyoDbl8D6nW3A2_KV4XdCa0J8FbvaIdT92NuD7Tka168Gb5KxNMfb_lG-4gIyF</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Zuehlke, Thomas W.</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200108</creationdate><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><author>Zuehlke, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bickel-Doksum</topic><topic>Box-Cox</topic><topic>censoring threshold</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Flexibility</topic><topic>Maximum likelihood method</topic><topic>Thresholds</topic><topic>Transformation</topic><topic>Two-Limit Tobit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuehlke, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</atitle><jtitle>Applied economics</jtitle><date>2020-01-08</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><spage>156</spage><epage>174</epage><pages>156-174</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2019.1638498</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6846 |
ispartof | Applied economics, 2020-01, Vol.52 (2), p.156-174 |
issn | 0003-6846 1466-4283 |
language | eng |
recordid | cdi_proquest_journals_2317808013 |
source | Business Source Complete (BSC) 商管财经类全文数据库(完整版) |
subjects | Bickel-Doksum Box-Cox censoring threshold Economic analysis Economic models Economic theory Estimating techniques Flexibility Maximum likelihood method Thresholds Transformation Two-Limit Tobit |
title | Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20a%20Two-Limit%20Tobit%20model%20with%20generalized%20Box-Cox%20transformation%20and%20unknown%20censoring%20thresholds&rft.jtitle=Applied%20economics&rft.au=Zuehlke,%20Thomas%20W.&rft.date=2020-01-08&rft.volume=52&rft.issue=2&rft.spage=156&rft.epage=174&rft.pages=156-174&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2019.1638498&rft_dat=%3Cproquest_econi%3E2317808013%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317808013&rft_id=info:pmid/&rfr_iscdi=true |