Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds

This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied economics 2020-01, Vol.52 (2), p.156-174
1. Verfasser: Zuehlke, Thomas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 2
container_start_page 156
container_title Applied economics
container_volume 52
creator Zuehlke, Thomas W.
description This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.
doi_str_mv 10.1080/00036846.2019.1638498
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2317808013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317808013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9CSYknrcusMuyN7WpH0kTL_VM2F2w6JZRoGnrr5e1Nd48AJnkeWeGB6FLkk9ILvLrPM8ZFwWf0JzUE8KZKGpxhEak4DwrqGDHaDQw2QCdorMQ3lJJKKtGyM1CtCsVLTgMBiu82EA2tysb8QKadK-g0z3e2LjEr9ppr3r7pTt8B9tsClscvXLBgD-0UK7Da_fuYONwq10Ab90rjkuvwxL6LpyjE6P6oC8O7xi93M8W08ds_vzwNL2dZ23aN2aalFVrVMcbWnDW8JpppRpVloJRY4paN-1wWiF0VQnR1IIbUXRVaajqRPrqGF3t-354-FzrEOUbrL1LIyVlpBJJG2GJKvdU6yEEr4388EmG30mSy0Gt_FUrB7XyoDbl8D6nW3A2_KV4XdCa0J8FbvaIdT92NuD7Tka168Gb5KxNMfb_lG-4gIyF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317808013</pqid></control><display><type>article</type><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><source>Business Source Complete (BSC) 商管财经类全文数据库(完整版)</source><creator>Zuehlke, Thomas W.</creator><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><description>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2019.1638498</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Bickel-Doksum ; Box-Cox ; censoring threshold ; Economic analysis ; Economic models ; Economic theory ; Estimating techniques ; Flexibility ; Maximum likelihood method ; Thresholds ; Transformation ; Two-Limit Tobit</subject><ispartof>Applied economics, 2020-01, Vol.52 (2), p.156-174</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</citedby><cites>FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><title>Applied economics</title><description>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</description><subject>Bickel-Doksum</subject><subject>Box-Cox</subject><subject>censoring threshold</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Flexibility</subject><subject>Maximum likelihood method</subject><subject>Thresholds</subject><subject>Transformation</subject><subject>Two-Limit Tobit</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9CSYknrcusMuyN7WpH0kTL_VM2F2w6JZRoGnrr5e1Nd48AJnkeWeGB6FLkk9ILvLrPM8ZFwWf0JzUE8KZKGpxhEak4DwrqGDHaDQw2QCdorMQ3lJJKKtGyM1CtCsVLTgMBiu82EA2tysb8QKadK-g0z3e2LjEr9ppr3r7pTt8B9tsClscvXLBgD-0UK7Da_fuYONwq10Ab90rjkuvwxL6LpyjE6P6oC8O7xi93M8W08ds_vzwNL2dZ23aN2aalFVrVMcbWnDW8JpppRpVloJRY4paN-1wWiF0VQnR1IIbUXRVaajqRPrqGF3t-354-FzrEOUbrL1LIyVlpBJJG2GJKvdU6yEEr4388EmG30mSy0Gt_FUrB7XyoDbl8D6nW3A2_KV4XdCa0J8FbvaIdT92NuD7Tka168Gb5KxNMfb_lG-4gIyF</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Zuehlke, Thomas W.</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200108</creationdate><title>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</title><author>Zuehlke, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e157cfad6b2463b693eaaba55832ff49ebc9ebcc88e7788b986f84d75f2ad8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bickel-Doksum</topic><topic>Box-Cox</topic><topic>censoring threshold</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Flexibility</topic><topic>Maximum likelihood method</topic><topic>Thresholds</topic><topic>Transformation</topic><topic>Two-Limit Tobit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuehlke, Thomas W.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuehlke, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds</atitle><jtitle>Applied economics</jtitle><date>2020-01-08</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><spage>156</spage><epage>174</epage><pages>156-174</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>This article considers estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds. The maximum likelihood estimates of the censoring thresholds are the smallest and largest elements of the order statistic of the transformed dependent variable for the uncensored subsample. Conditional on the estimated censoring thresholds and the parameter of the generalized Box-Cox transformation, the model is a standard Tobit model. If the dependent variable is scaled by the geometric mean of its absolute values for the uncensored subsample, then currently available software for estimation of Tobit models may be used in conjunction with a grid search over the Box-Cox parameter to determine the globalmaximum likelihood estimates. The advantage of the models proposed in this article is that: 1) use of estimated censoring thresholds serve to directly eliminate the understatement of tail probabilities that can result from use of fixed thresholds, and 2) use of the generalized Box-Cox transformation allows greater flexibility in the shape of the distribution used to model quantitative variation in the uncensored subsample, as well as greater flexibility in the tail probabilities of the censored subsample.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2019.1638498</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6846
ispartof Applied economics, 2020-01, Vol.52 (2), p.156-174
issn 0003-6846
1466-4283
language eng
recordid cdi_proquest_journals_2317808013
source Business Source Complete (BSC) 商管财经类全文数据库(完整版)
subjects Bickel-Doksum
Box-Cox
censoring threshold
Economic analysis
Economic models
Economic theory
Estimating techniques
Flexibility
Maximum likelihood method
Thresholds
Transformation
Two-Limit Tobit
title Estimation of a Two-Limit Tobit model with generalized Box-Cox transformation and unknown censoring thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20a%20Two-Limit%20Tobit%20model%20with%20generalized%20Box-Cox%20transformation%20and%20unknown%20censoring%20thresholds&rft.jtitle=Applied%20economics&rft.au=Zuehlke,%20Thomas%20W.&rft.date=2020-01-08&rft.volume=52&rft.issue=2&rft.spage=156&rft.epage=174&rft.pages=156-174&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2019.1638498&rft_dat=%3Cproquest_econi%3E2317808013%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317808013&rft_id=info:pmid/&rfr_iscdi=true