A semi-supervised convolutional neural network-based method for steel surface defect recognition

•Labeling large-scale data for steel surface defect recognition is costly and hard.•A semi-supervised learning method is proposed with limited labeled data.•This method has better performances with 17.53% improvement.•The proposed method is successfully applied into a real-world case. Automatic defe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics and computer-integrated manufacturing 2020-02, Vol.61, p.101825, Article 101825
Hauptverfasser: Gao, Yiping, Gao, Liang, Li, Xinyu, Yan, Xuguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!