Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis

Biomass, a renewable energy source, via available thermo-chemical processes has both engineering and environmental advantages. However, the understanding of the kinetics, evolved gases, and mechanisms for biomass pyrolysis is limited. We first propose a novel temperature response mechanism for the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-11, Vol.53 (22), p.13495-13505
Hauptverfasser: Song, Fanhao, Li, Tingting, Zhang, Jin, Wang, Xiaojie, Bai, Yingchen, Giesy, John P, Xing, Baoshan, Wu, Fengchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13505
container_issue 22
container_start_page 13495
container_title Environmental science & technology
container_volume 53
creator Song, Fanhao
Li, Tingting
Zhang, Jin
Wang, Xiaojie
Bai, Yingchen
Giesy, John P
Xing, Baoshan
Wu, Fengchang
description Biomass, a renewable energy source, via available thermo-chemical processes has both engineering and environmental advantages. However, the understanding of the kinetics, evolved gases, and mechanisms for biomass pyrolysis is limited. We first propose a novel temperature response mechanism for the pyrolysis of sugar cane residue using thermogravimetric analysis-Fourier transform infrared spectrometry-mass spectrometry (TG-FTIR-MS) combined with Gaussian model and two-dimensional correlation spectroscopy (2D COS). The existence and contribution of distinct peaks in TG-FTIR spectra were innovatively distinguished and quantified, and the temperature-dependent dynamics of gas amounts were determined using Gaussian deconvolution. The 2D-TG-FTIR/MS-COS results revealed for the first time that the primary sequential temperature responses of gases occurred in the order: H2O/CH4 > phenols/alkanes/aromatics/alcohols > carboxylic acids/ketones > CO2/ethers > aldehyde groups/acetaldehyde. Subtle sequential changes even occurred within the same gases during pyrolysis. The quantity dynamics and sequential responses of gases were fitted to the combined effects of the order-based, diffusion, and chemical reaction mechanisms for the component degradation. The combination of TG-FTIR-MS, Gaussian model, and 2D COS is a promising approach for the online monitoring and real-time management of biomass pyrolysis, providing favorable strategies for pyrolysis optimization, byproduct recovery, energy generation, and gas emission control in engineering and environmental applications.
doi_str_mv 10.1021/acs.est.9b04595
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2317027308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317027308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-514309ff36d8505994cefe311b5117eac5ceea2c58634e968e5b11f3937174583</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbPXhe8KJp2J5ttkqOWWov1Az_AW9huJnZLmq07SaH_vSkt3jwNw7z3hvdj7BxED0QIfW2oh1T30pmIVKoOWAdUKAKVKDhkHSFABqkcfB2zE6KFECKUIumwxbNbY8knFdnveU3cVrXj9Rz5o62wtoZu-GjtyjXmfKwJ21VXOX9CM9eVpSXxwnl-Z91SE_HL9-Zbez7UFfI3JJs3eMVfN96VG7J0yo4KXRKe7WeXfd6PPoYPwfRlPBneTgMtY1UHCiIp0qKQgzxRQqVpZLBACTBTADFqowyiDo1KBjLCdJCgmgEUMpUxxJFKZJdd7HJX3v00LZJs4RpftS-zUEIswrht3qr6O5Xxjshjka28XWq_yUBkW6BZCzTbuvdAW8f1zrE9_EX-p_4FdXB4DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317027308</pqid></control><display><type>article</type><title>Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis</title><source>ACS Publications</source><creator>Song, Fanhao ; Li, Tingting ; Zhang, Jin ; Wang, Xiaojie ; Bai, Yingchen ; Giesy, John P ; Xing, Baoshan ; Wu, Fengchang</creator><creatorcontrib>Song, Fanhao ; Li, Tingting ; Zhang, Jin ; Wang, Xiaojie ; Bai, Yingchen ; Giesy, John P ; Xing, Baoshan ; Wu, Fengchang</creatorcontrib><description>Biomass, a renewable energy source, via available thermo-chemical processes has both engineering and environmental advantages. However, the understanding of the kinetics, evolved gases, and mechanisms for biomass pyrolysis is limited. We first propose a novel temperature response mechanism for the pyrolysis of sugar cane residue using thermogravimetric analysis-Fourier transform infrared spectrometry-mass spectrometry (TG-FTIR-MS) combined with Gaussian model and two-dimensional correlation spectroscopy (2D COS). The existence and contribution of distinct peaks in TG-FTIR spectra were innovatively distinguished and quantified, and the temperature-dependent dynamics of gas amounts were determined using Gaussian deconvolution. The 2D-TG-FTIR/MS-COS results revealed for the first time that the primary sequential temperature responses of gases occurred in the order: H2O/CH4 &gt; phenols/alkanes/aromatics/alcohols &gt; carboxylic acids/ketones &gt; CO2/ethers &gt; aldehyde groups/acetaldehyde. Subtle sequential changes even occurred within the same gases during pyrolysis. The quantity dynamics and sequential responses of gases were fitted to the combined effects of the order-based, diffusion, and chemical reaction mechanisms for the component degradation. The combination of TG-FTIR-MS, Gaussian model, and 2D COS is a promising approach for the online monitoring and real-time management of biomass pyrolysis, providing favorable strategies for pyrolysis optimization, byproduct recovery, energy generation, and gas emission control in engineering and environmental applications.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b04595</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Acetaldehyde ; Alcohols ; Aldehydes ; Alkanes ; Aromatic compounds ; Biodegradation ; Biomass ; Biomass energy production ; Carbon dioxide ; Carboxylic acids ; Chemical reactions ; Diffusion effects ; Emissions control ; Energy recovery ; Engineering ; Ethers ; Fourier analysis ; Fourier transforms ; Gases ; Infrared analysis ; Infrared spectroscopy ; Ketones ; Kinetics ; Mass spectrometry ; Mass spectroscopy ; Optimization ; Organic chemistry ; Phenols ; Pyrolysis ; Reaction kinetics ; Reaction mechanisms ; Renewable energy sources ; Scientific imaging ; Sugarcane ; Temperature dependence ; Two dimensional models</subject><ispartof>Environmental science &amp; technology, 2019-11, Vol.53 (22), p.13495-13505</ispartof><rights>Copyright American Chemical Society Nov 19, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-514309ff36d8505994cefe311b5117eac5ceea2c58634e968e5b11f3937174583</citedby><cites>FETCH-LOGICAL-a375t-514309ff36d8505994cefe311b5117eac5ceea2c58634e968e5b11f3937174583</cites><orcidid>0000-0003-2869-422X ; 0000-0003-2615-2849 ; 0000-0003-2028-1295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b04595$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b04595$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Song, Fanhao</creatorcontrib><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Bai, Yingchen</creatorcontrib><creatorcontrib>Giesy, John P</creatorcontrib><creatorcontrib>Xing, Baoshan</creatorcontrib><creatorcontrib>Wu, Fengchang</creatorcontrib><title>Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Biomass, a renewable energy source, via available thermo-chemical processes has both engineering and environmental advantages. However, the understanding of the kinetics, evolved gases, and mechanisms for biomass pyrolysis is limited. We first propose a novel temperature response mechanism for the pyrolysis of sugar cane residue using thermogravimetric analysis-Fourier transform infrared spectrometry-mass spectrometry (TG-FTIR-MS) combined with Gaussian model and two-dimensional correlation spectroscopy (2D COS). The existence and contribution of distinct peaks in TG-FTIR spectra were innovatively distinguished and quantified, and the temperature-dependent dynamics of gas amounts were determined using Gaussian deconvolution. The 2D-TG-FTIR/MS-COS results revealed for the first time that the primary sequential temperature responses of gases occurred in the order: H2O/CH4 &gt; phenols/alkanes/aromatics/alcohols &gt; carboxylic acids/ketones &gt; CO2/ethers &gt; aldehyde groups/acetaldehyde. Subtle sequential changes even occurred within the same gases during pyrolysis. The quantity dynamics and sequential responses of gases were fitted to the combined effects of the order-based, diffusion, and chemical reaction mechanisms for the component degradation. The combination of TG-FTIR-MS, Gaussian model, and 2D COS is a promising approach for the online monitoring and real-time management of biomass pyrolysis, providing favorable strategies for pyrolysis optimization, byproduct recovery, energy generation, and gas emission control in engineering and environmental applications.</description><subject>Acetaldehyde</subject><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Alkanes</subject><subject>Aromatic compounds</subject><subject>Biodegradation</subject><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Carbon dioxide</subject><subject>Carboxylic acids</subject><subject>Chemical reactions</subject><subject>Diffusion effects</subject><subject>Emissions control</subject><subject>Energy recovery</subject><subject>Engineering</subject><subject>Ethers</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Ketones</subject><subject>Kinetics</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Phenols</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Renewable energy sources</subject><subject>Scientific imaging</subject><subject>Sugarcane</subject><subject>Temperature dependence</subject><subject>Two dimensional models</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbPXhe8KJp2J5ttkqOWWov1Az_AW9huJnZLmq07SaH_vSkt3jwNw7z3hvdj7BxED0QIfW2oh1T30pmIVKoOWAdUKAKVKDhkHSFABqkcfB2zE6KFECKUIumwxbNbY8knFdnveU3cVrXj9Rz5o62wtoZu-GjtyjXmfKwJ21VXOX9CM9eVpSXxwnl-Z91SE_HL9-Zbez7UFfI3JJs3eMVfN96VG7J0yo4KXRKe7WeXfd6PPoYPwfRlPBneTgMtY1UHCiIp0qKQgzxRQqVpZLBACTBTADFqowyiDo1KBjLCdJCgmgEUMpUxxJFKZJdd7HJX3v00LZJs4RpftS-zUEIswrht3qr6O5Xxjshjka28XWq_yUBkW6BZCzTbuvdAW8f1zrE9_EX-p_4FdXB4DA</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Song, Fanhao</creator><creator>Li, Tingting</creator><creator>Zhang, Jin</creator><creator>Wang, Xiaojie</creator><creator>Bai, Yingchen</creator><creator>Giesy, John P</creator><creator>Xing, Baoshan</creator><creator>Wu, Fengchang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2869-422X</orcidid><orcidid>https://orcid.org/0000-0003-2615-2849</orcidid><orcidid>https://orcid.org/0000-0003-2028-1295</orcidid></search><sort><creationdate>20191119</creationdate><title>Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis</title><author>Song, Fanhao ; Li, Tingting ; Zhang, Jin ; Wang, Xiaojie ; Bai, Yingchen ; Giesy, John P ; Xing, Baoshan ; Wu, Fengchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-514309ff36d8505994cefe311b5117eac5ceea2c58634e968e5b11f3937174583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetaldehyde</topic><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Alkanes</topic><topic>Aromatic compounds</topic><topic>Biodegradation</topic><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Carbon dioxide</topic><topic>Carboxylic acids</topic><topic>Chemical reactions</topic><topic>Diffusion effects</topic><topic>Emissions control</topic><topic>Energy recovery</topic><topic>Engineering</topic><topic>Ethers</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Ketones</topic><topic>Kinetics</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Phenols</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Renewable energy sources</topic><topic>Scientific imaging</topic><topic>Sugarcane</topic><topic>Temperature dependence</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Fanhao</creatorcontrib><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Bai, Yingchen</creatorcontrib><creatorcontrib>Giesy, John P</creatorcontrib><creatorcontrib>Xing, Baoshan</creatorcontrib><creatorcontrib>Wu, Fengchang</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Fanhao</au><au>Li, Tingting</au><au>Zhang, Jin</au><au>Wang, Xiaojie</au><au>Bai, Yingchen</au><au>Giesy, John P</au><au>Xing, Baoshan</au><au>Wu, Fengchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-11-19</date><risdate>2019</risdate><volume>53</volume><issue>22</issue><spage>13495</spage><epage>13505</epage><pages>13495-13505</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Biomass, a renewable energy source, via available thermo-chemical processes has both engineering and environmental advantages. However, the understanding of the kinetics, evolved gases, and mechanisms for biomass pyrolysis is limited. We first propose a novel temperature response mechanism for the pyrolysis of sugar cane residue using thermogravimetric analysis-Fourier transform infrared spectrometry-mass spectrometry (TG-FTIR-MS) combined with Gaussian model and two-dimensional correlation spectroscopy (2D COS). The existence and contribution of distinct peaks in TG-FTIR spectra were innovatively distinguished and quantified, and the temperature-dependent dynamics of gas amounts were determined using Gaussian deconvolution. The 2D-TG-FTIR/MS-COS results revealed for the first time that the primary sequential temperature responses of gases occurred in the order: H2O/CH4 &gt; phenols/alkanes/aromatics/alcohols &gt; carboxylic acids/ketones &gt; CO2/ethers &gt; aldehyde groups/acetaldehyde. Subtle sequential changes even occurred within the same gases during pyrolysis. The quantity dynamics and sequential responses of gases were fitted to the combined effects of the order-based, diffusion, and chemical reaction mechanisms for the component degradation. The combination of TG-FTIR-MS, Gaussian model, and 2D COS is a promising approach for the online monitoring and real-time management of biomass pyrolysis, providing favorable strategies for pyrolysis optimization, byproduct recovery, energy generation, and gas emission control in engineering and environmental applications.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.9b04595</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2869-422X</orcidid><orcidid>https://orcid.org/0000-0003-2615-2849</orcidid><orcidid>https://orcid.org/0000-0003-2028-1295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-11, Vol.53 (22), p.13495-13505
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2317027308
source ACS Publications
subjects Acetaldehyde
Alcohols
Aldehydes
Alkanes
Aromatic compounds
Biodegradation
Biomass
Biomass energy production
Carbon dioxide
Carboxylic acids
Chemical reactions
Diffusion effects
Emissions control
Energy recovery
Engineering
Ethers
Fourier analysis
Fourier transforms
Gases
Infrared analysis
Infrared spectroscopy
Ketones
Kinetics
Mass spectrometry
Mass spectroscopy
Optimization
Organic chemistry
Phenols
Pyrolysis
Reaction kinetics
Reaction mechanisms
Renewable energy sources
Scientific imaging
Sugarcane
Temperature dependence
Two dimensional models
title Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Insights%20into%20the%20Kinetics,%20Evolved%20Gases,%20and%20Mechanisms%20for%20Biomass%20(Sugar%20Cane%20Residue)%20Pyrolysis&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Song,%20Fanhao&rft.date=2019-11-19&rft.volume=53&rft.issue=22&rft.spage=13495&rft.epage=13505&rft.pages=13495-13505&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b04595&rft_dat=%3Cproquest_cross%3E2317027308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317027308&rft_id=info:pmid/&rfr_iscdi=true