Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector
In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure an...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-11, Vol.187, p.115990, Article 115990 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115990 |
container_title | Energy (Oxford) |
container_volume | 187 |
creator | Pang, Wei Zhang, Qian Cui, Yanan Zhang, Linrui Yu, Hongwen Zhang, Xiaoyan Zhang, Yongzhe Yan, Hui |
description | In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
•A novel design of PVT system using a roll-bond thermal collector was investigated.•A good agreement presents between numerical and experimental results.•The electrical, thermal and exergy efficiencies of the PVT system were 13.67%, 40.56% and 15.56%.•The electrical energy can be increased by 3.25% via a timed supplement water strategy. |
doi_str_mv | 10.1016/j.energy.2019.115990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2317026609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219316846</els_id><sourcerecordid>2317026609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f4f552a6b4f7f025a4cd62d1b5eccd02f75868cee1c682fd00f0ad3d9aa0cb763</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoIduk_yAHQc_eHcmWbF8CJbRJYWkvzVnI0iirxba2krx0_320uOeeBua9-Yb3CHlgsGXA5O64xRnj22XLgfVbxkTfww3ZsK6tK9l24gPZQC2hEk3Db8mnlI4AILq-35DLz2XC6I0eafLTMursw0z1bCn-PRVhwjkX7axHb1ctOKrp6RByOIcxa292-YBxugIuKeNEB53Q0iuFxjCO1RAKTY_L5Odloqas0OQQ78lHp8eEn__NO_L6_dvvp5dq_-v5x9PXfWXqts6Va5wQXMuhca0DLnRjrOSWDQKNscBdKzrZGURmZMedBXCgbW17rcEMrazvyJeVe4rhz4Ipq2NY4lxeKl6zFriU0BdXs7pMDClFdOpUwut4UQzUtWR1VGvJ6lqyWksuZ4_rGZYEZ49RJeNxNmh9LCmVDf7_gHdm2YsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317026609</pqid></control><display><type>article</type><title>Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector</title><source>Elsevier ScienceDirect Journals</source><creator>Pang, Wei ; Zhang, Qian ; Cui, Yanan ; Zhang, Linrui ; Yu, Hongwen ; Zhang, Xiaoyan ; Zhang, Yongzhe ; Yan, Hui</creator><creatorcontrib>Pang, Wei ; Zhang, Qian ; Cui, Yanan ; Zhang, Linrui ; Yu, Hongwen ; Zhang, Xiaoyan ; Zhang, Yongzhe ; Yan, Hui</creatorcontrib><description>In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
•A novel design of PVT system using a roll-bond thermal collector was investigated.•A good agreement presents between numerical and experimental results.•The electrical, thermal and exergy efficiencies of the PVT system were 13.67%, 40.56% and 15.56%.•The electrical energy can be increased by 3.25% via a timed supplement water strategy.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.115990</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum collector ; Computer simulation ; Flow rates ; Mass flow rate ; Mathematical models ; Modules ; Photovoltaic cells ; Photovoltaic/thermal system ; Photovoltaics ; Roll bonding ; Roll-bond design ; Steady state models ; Supplemental water strategy ; Thermal analysis ; Thermal simulation ; Water circulation</subject><ispartof>Energy (Oxford), 2019-11, Vol.187, p.115990, Article 115990</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f4f552a6b4f7f025a4cd62d1b5eccd02f75868cee1c682fd00f0ad3d9aa0cb763</citedby><cites>FETCH-LOGICAL-c373t-f4f552a6b4f7f025a4cd62d1b5eccd02f75868cee1c682fd00f0ad3d9aa0cb763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544219316846$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Cui, Yanan</creatorcontrib><creatorcontrib>Zhang, Linrui</creatorcontrib><creatorcontrib>Yu, Hongwen</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Yongzhe</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><title>Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector</title><title>Energy (Oxford)</title><description>In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
•A novel design of PVT system using a roll-bond thermal collector was investigated.•A good agreement presents between numerical and experimental results.•The electrical, thermal and exergy efficiencies of the PVT system were 13.67%, 40.56% and 15.56%.•The electrical energy can be increased by 3.25% via a timed supplement water strategy.</description><subject>Aluminum</subject><subject>Aluminum collector</subject><subject>Computer simulation</subject><subject>Flow rates</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic/thermal system</subject><subject>Photovoltaics</subject><subject>Roll bonding</subject><subject>Roll-bond design</subject><subject>Steady state models</subject><subject>Supplemental water strategy</subject><subject>Thermal analysis</subject><subject>Thermal simulation</subject><subject>Water circulation</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoIduk_yAHQc_eHcmWbF8CJbRJYWkvzVnI0iirxba2krx0_320uOeeBua9-Yb3CHlgsGXA5O64xRnj22XLgfVbxkTfww3ZsK6tK9l24gPZQC2hEk3Db8mnlI4AILq-35DLz2XC6I0eafLTMursw0z1bCn-PRVhwjkX7axHb1ctOKrp6RByOIcxa292-YBxugIuKeNEB53Q0iuFxjCO1RAKTY_L5Odloqas0OQQ78lHp8eEn__NO_L6_dvvp5dq_-v5x9PXfWXqts6Va5wQXMuhca0DLnRjrOSWDQKNscBdKzrZGURmZMedBXCgbW17rcEMrazvyJeVe4rhz4Ipq2NY4lxeKl6zFriU0BdXs7pMDClFdOpUwut4UQzUtWR1VGvJ6lqyWksuZ4_rGZYEZ49RJeNxNmh9LCmVDf7_gHdm2YsC</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Pang, Wei</creator><creator>Zhang, Qian</creator><creator>Cui, Yanan</creator><creator>Zhang, Linrui</creator><creator>Yu, Hongwen</creator><creator>Zhang, Xiaoyan</creator><creator>Zhang, Yongzhe</creator><creator>Yan, Hui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20191115</creationdate><title>Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector</title><author>Pang, Wei ; Zhang, Qian ; Cui, Yanan ; Zhang, Linrui ; Yu, Hongwen ; Zhang, Xiaoyan ; Zhang, Yongzhe ; Yan, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f4f552a6b4f7f025a4cd62d1b5eccd02f75868cee1c682fd00f0ad3d9aa0cb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum collector</topic><topic>Computer simulation</topic><topic>Flow rates</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic/thermal system</topic><topic>Photovoltaics</topic><topic>Roll bonding</topic><topic>Roll-bond design</topic><topic>Steady state models</topic><topic>Supplemental water strategy</topic><topic>Thermal analysis</topic><topic>Thermal simulation</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Cui, Yanan</creatorcontrib><creatorcontrib>Zhang, Linrui</creatorcontrib><creatorcontrib>Yu, Hongwen</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Yongzhe</creatorcontrib><creatorcontrib>Yan, Hui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Wei</au><au>Zhang, Qian</au><au>Cui, Yanan</au><au>Zhang, Linrui</au><au>Yu, Hongwen</au><au>Zhang, Xiaoyan</au><au>Zhang, Yongzhe</au><au>Yan, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>187</volume><spage>115990</spage><pages>115990-</pages><artnum>115990</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this paper, the performance of a polycrystalline silicon photovoltaic module and photovoltaic/thermal module are experimentally investigated under outdoor conditions, using a roll-bond thermal collector attached on the backside of the photovoltaic module. Furthermore, the temperature, pressure and velocity distributions across the photovoltaic/thermal module are simulated using a steady state thermal model. Compared with the photovoltaic module, the performances of photovoltaic/thermal module with and without the coolant circulation are both examined using a water volume of 100 L and a coolant mass flow rate of 0.034 kg/s. Using a design with a timed supplement water strategy, the electrical energy produced by the photovoltaic/thermal system has been increased by 3.25%. Compared without supplement before, the electrical energy can be extra increased more than 1%. A good agreement is found between simulated and experimental results. There is no doubt that the output performance of the photovoltaic/thermal system can be improved effectively by the design of timed supplement water.
•A novel design of PVT system using a roll-bond thermal collector was investigated.•A good agreement presents between numerical and experimental results.•The electrical, thermal and exergy efficiencies of the PVT system were 13.67%, 40.56% and 15.56%.•The electrical energy can be increased by 3.25% via a timed supplement water strategy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.115990</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-11, Vol.187, p.115990, Article 115990 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2317026609 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Aluminum collector Computer simulation Flow rates Mass flow rate Mathematical models Modules Photovoltaic cells Photovoltaic/thermal system Photovoltaics Roll bonding Roll-bond design Steady state models Supplemental water strategy Thermal analysis Thermal simulation Water circulation |
title | Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20validation%20of%20a%20photovoltaic/thermal%20system%20based%20on%20a%20roll-bond%20aluminum%20collector&rft.jtitle=Energy%20(Oxford)&rft.au=Pang,%20Wei&rft.date=2019-11-15&rft.volume=187&rft.spage=115990&rft.pages=115990-&rft.artnum=115990&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.115990&rft_dat=%3Cproquest_cross%3E2317026609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317026609&rft_id=info:pmid/&rft_els_id=S0360544219316846&rfr_iscdi=true |