Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs

Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Hydrology and Hydromechanics 2019-12, Vol.67 (4), p.322-328
Hauptverfasser: Říha, Jaromír, Duchan, David, Zachoval, Zbyněk, Erpicum, Sébastien, Archambeau, Pierre, Pirotton, Michel, Dewals, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 4
container_start_page 322
container_title Journal of Hydrology and Hydromechanics
container_volume 67
creator Říha, Jaromír
Duchan, David
Zachoval, Zbyněk
Erpicum, Sébastien
Archambeau, Pierre
Pirotton, Michel
Dewals, Benjamin
description Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1: Z 1 = 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.
doi_str_mv 10.2478/johh-2019-0014
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2316959288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa55d71ce40547149541ea2472500fb9</doaj_id><sourcerecordid>2316959288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</originalsourceid><addsrcrecordid>eNpNkU1Lw0AQhoMoWKtXzwueU2c3u0n2KMWPQkEPCl5kmW5m24SkW3dTi_56UyviaYaZl3c-niS55DARsiivG79apQK4TgG4PEpGAFKkhYbX43_5aXIWYwOQK1GIUfL2RMH50OHaEvOOIYsrbFu_S3fYU2Cdr6hlg4LFutu22NfrJXNDn_mPod0H3NCXryts2SJ4rFIbKPZUsR3VIZ4nJw7bSBe_cZy83N0-Tx_S-eP9bHozT63kRZ8qlDlCIYkLRQsQTltblhaQVJZJkhacwEKXUHJUubKYa1hkQFBJzh2X2TiZHXwrj43ZhLrD8Gk81uan4MPSYOhr25JBVKoquCUJShZcaiU54fBAoQDcQg9eVwevTfDv2-EY0_htWA_rG5HxXCstynJQTQ4qG3yMgdzfVA5mj8PscZg9DrPHkX0Dub99yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316959288</pqid></control><display><type>article</type><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><source>DOAJ Directory of Open Access Journals</source><source>Walter De Gruyter: Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</creator><creatorcontrib>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</creatorcontrib><description>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1: Z 1 = 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</description><identifier>ISSN: 0042-790X</identifier><identifier>EISSN: 0042-790X</identifier><identifier>EISSN: 1338-4333</identifier><identifier>DOI: 10.2478/johh-2019-0014</identifier><language>eng</language><publisher>Bratislava: De Gruyter Poland</publisher><subject>Broad-crested weirs ; Civil engineering ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Contraction ; Discharge coefficient ; Downstream effects ; Flooding ; Floods ; Flow simulation ; Fluid flow ; frontal broad-crested weir ; Geometry ; Hydraulics ; Levees ; Mathematical models ; Numerical simulations ; Overtopping ; Physical simulation ; River systems ; Rivers ; rough weir crest ; shallow flow modelling ; Shallow water ; Simulation ; Slope ; Slopes ; Spillways ; Surface roughness ; Topography (geology) ; Upstream ; Vertical flow ; Vertical mixing ; Weirs</subject><ispartof>Journal of Hydrology and Hydromechanics, 2019-12, Vol.67 (4), p.322-328</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</citedby><cites>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Říha, Jaromír</creatorcontrib><creatorcontrib>Duchan, David</creatorcontrib><creatorcontrib>Zachoval, Zbyněk</creatorcontrib><creatorcontrib>Erpicum, Sébastien</creatorcontrib><creatorcontrib>Archambeau, Pierre</creatorcontrib><creatorcontrib>Pirotton, Michel</creatorcontrib><creatorcontrib>Dewals, Benjamin</creatorcontrib><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><title>Journal of Hydrology and Hydromechanics</title><description>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1: Z 1 = 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</description><subject>Broad-crested weirs</subject><subject>Civil engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Contraction</subject><subject>Discharge coefficient</subject><subject>Downstream effects</subject><subject>Flooding</subject><subject>Floods</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>frontal broad-crested weir</subject><subject>Geometry</subject><subject>Hydraulics</subject><subject>Levees</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Overtopping</subject><subject>Physical simulation</subject><subject>River systems</subject><subject>Rivers</subject><subject>rough weir crest</subject><subject>shallow flow modelling</subject><subject>Shallow water</subject><subject>Simulation</subject><subject>Slope</subject><subject>Slopes</subject><subject>Spillways</subject><subject>Surface roughness</subject><subject>Topography (geology)</subject><subject>Upstream</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>Weirs</subject><issn>0042-790X</issn><issn>0042-790X</issn><issn>1338-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1Lw0AQhoMoWKtXzwueU2c3u0n2KMWPQkEPCl5kmW5m24SkW3dTi_56UyviaYaZl3c-niS55DARsiivG79apQK4TgG4PEpGAFKkhYbX43_5aXIWYwOQK1GIUfL2RMH50OHaEvOOIYsrbFu_S3fYU2Cdr6hlg4LFutu22NfrJXNDn_mPod0H3NCXryts2SJ4rFIbKPZUsR3VIZ4nJw7bSBe_cZy83N0-Tx_S-eP9bHozT63kRZ8qlDlCIYkLRQsQTltblhaQVJZJkhacwEKXUHJUubKYa1hkQFBJzh2X2TiZHXwrj43ZhLrD8Gk81uan4MPSYOhr25JBVKoquCUJShZcaiU54fBAoQDcQg9eVwevTfDv2-EY0_htWA_rG5HxXCstynJQTQ4qG3yMgdzfVA5mj8PscZg9DrPHkX0Dub99yA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Říha, Jaromír</creator><creator>Duchan, David</creator><creator>Zachoval, Zbyněk</creator><creator>Erpicum, Sébastien</creator><creator>Archambeau, Pierre</creator><creator>Pirotton, Michel</creator><creator>Dewals, Benjamin</creator><general>De Gruyter Poland</general><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20191201</creationdate><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><author>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broad-crested weirs</topic><topic>Civil engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Contraction</topic><topic>Discharge coefficient</topic><topic>Downstream effects</topic><topic>Flooding</topic><topic>Floods</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>frontal broad-crested weir</topic><topic>Geometry</topic><topic>Hydraulics</topic><topic>Levees</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Overtopping</topic><topic>Physical simulation</topic><topic>River systems</topic><topic>Rivers</topic><topic>rough weir crest</topic><topic>shallow flow modelling</topic><topic>Shallow water</topic><topic>Simulation</topic><topic>Slope</topic><topic>Slopes</topic><topic>Spillways</topic><topic>Surface roughness</topic><topic>Topography (geology)</topic><topic>Upstream</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>Weirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Říha, Jaromír</creatorcontrib><creatorcontrib>Duchan, David</creatorcontrib><creatorcontrib>Zachoval, Zbyněk</creatorcontrib><creatorcontrib>Erpicum, Sébastien</creatorcontrib><creatorcontrib>Archambeau, Pierre</creatorcontrib><creatorcontrib>Pirotton, Michel</creatorcontrib><creatorcontrib>Dewals, Benjamin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Hydrology and Hydromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Říha, Jaromír</au><au>Duchan, David</au><au>Zachoval, Zbyněk</au><au>Erpicum, Sébastien</au><au>Archambeau, Pierre</au><au>Pirotton, Michel</au><au>Dewals, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</atitle><jtitle>Journal of Hydrology and Hydromechanics</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>67</volume><issue>4</issue><spage>322</spage><epage>328</epage><pages>322-328</pages><issn>0042-790X</issn><eissn>0042-790X</eissn><eissn>1338-4333</eissn><abstract>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1: Z 1 = 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</abstract><cop>Bratislava</cop><pub>De Gruyter Poland</pub><doi>10.2478/johh-2019-0014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-790X
ispartof Journal of Hydrology and Hydromechanics, 2019-12, Vol.67 (4), p.322-328
issn 0042-790X
0042-790X
1338-4333
language eng
recordid cdi_proquest_journals_2316959288
source DOAJ Directory of Open Access Journals; Walter De Gruyter: Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Broad-crested weirs
Civil engineering
Computational fluid dynamics
Computer applications
Computer simulation
Contraction
Discharge coefficient
Downstream effects
Flooding
Floods
Flow simulation
Fluid flow
frontal broad-crested weir
Geometry
Hydraulics
Levees
Mathematical models
Numerical simulations
Overtopping
Physical simulation
River systems
Rivers
rough weir crest
shallow flow modelling
Shallow water
Simulation
Slope
Slopes
Spillways
Surface roughness
Topography (geology)
Upstream
Vertical flow
Vertical mixing
Weirs
title Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20a%20shallow-water%20model%20for%20simulating%20flow%20over%20trapezoidal%20broad-crested%20weirs&rft.jtitle=Journal%20of%20Hydrology%20and%20Hydromechanics&rft.au=%C5%98%C3%ADha,%20Jarom%C3%ADr&rft.date=2019-12-01&rft.volume=67&rft.issue=4&rft.spage=322&rft.epage=328&rft.pages=322-328&rft.issn=0042-790X&rft.eissn=0042-790X&rft_id=info:doi/10.2478/johh-2019-0014&rft_dat=%3Cproquest_doaj_%3E2316959288%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316959288&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_aa55d71ce40547149541ea2472500fb9&rfr_iscdi=true