Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs
Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundatio...
Gespeichert in:
Veröffentlicht in: | Journal of Hydrology and Hydromechanics 2019-12, Vol.67 (4), p.322-328 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 4 |
container_start_page | 322 |
container_title | Journal of Hydrology and Hydromechanics |
container_volume | 67 |
creator | Říha, Jaromír Duchan, David Zachoval, Zbyněk Erpicum, Sébastien Archambeau, Pierre Pirotton, Michel Dewals, Benjamin |
description | Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1:
Z
1
= 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes. |
doi_str_mv | 10.2478/johh-2019-0014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2316959288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aa55d71ce40547149541ea2472500fb9</doaj_id><sourcerecordid>2316959288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</originalsourceid><addsrcrecordid>eNpNkU1Lw0AQhoMoWKtXzwueU2c3u0n2KMWPQkEPCl5kmW5m24SkW3dTi_56UyviaYaZl3c-niS55DARsiivG79apQK4TgG4PEpGAFKkhYbX43_5aXIWYwOQK1GIUfL2RMH50OHaEvOOIYsrbFu_S3fYU2Cdr6hlg4LFutu22NfrJXNDn_mPod0H3NCXryts2SJ4rFIbKPZUsR3VIZ4nJw7bSBe_cZy83N0-Tx_S-eP9bHozT63kRZ8qlDlCIYkLRQsQTltblhaQVJZJkhacwEKXUHJUubKYa1hkQFBJzh2X2TiZHXwrj43ZhLrD8Gk81uan4MPSYOhr25JBVKoquCUJShZcaiU54fBAoQDcQg9eVwevTfDv2-EY0_htWA_rG5HxXCstynJQTQ4qG3yMgdzfVA5mj8PscZg9DrPHkX0Dub99yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316959288</pqid></control><display><type>article</type><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><source>DOAJ Directory of Open Access Journals</source><source>Walter De Gruyter: Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</creator><creatorcontrib>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</creatorcontrib><description>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1:
Z
1
= 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</description><identifier>ISSN: 0042-790X</identifier><identifier>EISSN: 0042-790X</identifier><identifier>EISSN: 1338-4333</identifier><identifier>DOI: 10.2478/johh-2019-0014</identifier><language>eng</language><publisher>Bratislava: De Gruyter Poland</publisher><subject>Broad-crested weirs ; Civil engineering ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Contraction ; Discharge coefficient ; Downstream effects ; Flooding ; Floods ; Flow simulation ; Fluid flow ; frontal broad-crested weir ; Geometry ; Hydraulics ; Levees ; Mathematical models ; Numerical simulations ; Overtopping ; Physical simulation ; River systems ; Rivers ; rough weir crest ; shallow flow modelling ; Shallow water ; Simulation ; Slope ; Slopes ; Spillways ; Surface roughness ; Topography (geology) ; Upstream ; Vertical flow ; Vertical mixing ; Weirs</subject><ispartof>Journal of Hydrology and Hydromechanics, 2019-12, Vol.67 (4), p.322-328</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</citedby><cites>FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Říha, Jaromír</creatorcontrib><creatorcontrib>Duchan, David</creatorcontrib><creatorcontrib>Zachoval, Zbyněk</creatorcontrib><creatorcontrib>Erpicum, Sébastien</creatorcontrib><creatorcontrib>Archambeau, Pierre</creatorcontrib><creatorcontrib>Pirotton, Michel</creatorcontrib><creatorcontrib>Dewals, Benjamin</creatorcontrib><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><title>Journal of Hydrology and Hydromechanics</title><description>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1:
Z
1
= 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</description><subject>Broad-crested weirs</subject><subject>Civil engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Contraction</subject><subject>Discharge coefficient</subject><subject>Downstream effects</subject><subject>Flooding</subject><subject>Floods</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>frontal broad-crested weir</subject><subject>Geometry</subject><subject>Hydraulics</subject><subject>Levees</subject><subject>Mathematical models</subject><subject>Numerical simulations</subject><subject>Overtopping</subject><subject>Physical simulation</subject><subject>River systems</subject><subject>Rivers</subject><subject>rough weir crest</subject><subject>shallow flow modelling</subject><subject>Shallow water</subject><subject>Simulation</subject><subject>Slope</subject><subject>Slopes</subject><subject>Spillways</subject><subject>Surface roughness</subject><subject>Topography (geology)</subject><subject>Upstream</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>Weirs</subject><issn>0042-790X</issn><issn>0042-790X</issn><issn>1338-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1Lw0AQhoMoWKtXzwueU2c3u0n2KMWPQkEPCl5kmW5m24SkW3dTi_56UyviaYaZl3c-niS55DARsiivG79apQK4TgG4PEpGAFKkhYbX43_5aXIWYwOQK1GIUfL2RMH50OHaEvOOIYsrbFu_S3fYU2Cdr6hlg4LFutu22NfrJXNDn_mPod0H3NCXryts2SJ4rFIbKPZUsR3VIZ4nJw7bSBe_cZy83N0-Tx_S-eP9bHozT63kRZ8qlDlCIYkLRQsQTltblhaQVJZJkhacwEKXUHJUubKYa1hkQFBJzh2X2TiZHXwrj43ZhLrD8Gk81uan4MPSYOhr25JBVKoquCUJShZcaiU54fBAoQDcQg9eVwevTfDv2-EY0_htWA_rG5HxXCstynJQTQ4qG3yMgdzfVA5mj8PscZg9DrPHkX0Dub99yA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Říha, Jaromír</creator><creator>Duchan, David</creator><creator>Zachoval, Zbyněk</creator><creator>Erpicum, Sébastien</creator><creator>Archambeau, Pierre</creator><creator>Pirotton, Michel</creator><creator>Dewals, Benjamin</creator><general>De Gruyter Poland</general><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20191201</creationdate><title>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</title><author>Říha, Jaromír ; Duchan, David ; Zachoval, Zbyněk ; Erpicum, Sébastien ; Archambeau, Pierre ; Pirotton, Michel ; Dewals, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5a46a074e125eb02f9cc88c0ae5334e4c0f2a798081a565ca690b30e0d411f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broad-crested weirs</topic><topic>Civil engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Contraction</topic><topic>Discharge coefficient</topic><topic>Downstream effects</topic><topic>Flooding</topic><topic>Floods</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>frontal broad-crested weir</topic><topic>Geometry</topic><topic>Hydraulics</topic><topic>Levees</topic><topic>Mathematical models</topic><topic>Numerical simulations</topic><topic>Overtopping</topic><topic>Physical simulation</topic><topic>River systems</topic><topic>Rivers</topic><topic>rough weir crest</topic><topic>shallow flow modelling</topic><topic>Shallow water</topic><topic>Simulation</topic><topic>Slope</topic><topic>Slopes</topic><topic>Spillways</topic><topic>Surface roughness</topic><topic>Topography (geology)</topic><topic>Upstream</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>Weirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Říha, Jaromír</creatorcontrib><creatorcontrib>Duchan, David</creatorcontrib><creatorcontrib>Zachoval, Zbyněk</creatorcontrib><creatorcontrib>Erpicum, Sébastien</creatorcontrib><creatorcontrib>Archambeau, Pierre</creatorcontrib><creatorcontrib>Pirotton, Michel</creatorcontrib><creatorcontrib>Dewals, Benjamin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Hydrology and Hydromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Říha, Jaromír</au><au>Duchan, David</au><au>Zachoval, Zbyněk</au><au>Erpicum, Sébastien</au><au>Archambeau, Pierre</au><au>Pirotton, Michel</au><au>Dewals, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs</atitle><jtitle>Journal of Hydrology and Hydromechanics</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>67</volume><issue>4</issue><spage>322</spage><epage>328</epage><pages>322-328</pages><issn>0042-790X</issn><eissn>0042-790X</eissn><eissn>1338-4333</eissn><abstract>Shallow-water models are standard for simulating flow in river systems during floods, including in the near-field of sudden changes in the topography, where vertical flow contraction occurs such as in case of channel overbanking, side spillways or levee overtopping. In the case of stagnant inundation and for frontal flow, the flow configurations are close to the flow over a broad-crested weir with the trapezoidal profile in the flow direction (i.e. inclined upstream and downstream slopes). In this study, results of shallow-water numerical modelling were compared with seven sets of previous experimental observations of flow over a frontal broad-crested weir, to assess the effect of vertical contraction and surface roughness on the accuracy of the computational results. Three different upstream slopes of the broad-crested weir (V:H = 1:
Z
1
= 1:1, 1:2, 1:3) and three roughness scenarios were tested. The results indicate that, for smooth surface, numerical simulations overestimate by about 2 to 5% the weir discharge coefficient. In case of a rough surface, the difference between computations and observations reach up to 10%, for high relative roughness. When taking into account mentioned the differences, the shallow-water model may be applied for a range of engineering purposes.</abstract><cop>Bratislava</cop><pub>De Gruyter Poland</pub><doi>10.2478/johh-2019-0014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-790X |
ispartof | Journal of Hydrology and Hydromechanics, 2019-12, Vol.67 (4), p.322-328 |
issn | 0042-790X 0042-790X 1338-4333 |
language | eng |
recordid | cdi_proquest_journals_2316959288 |
source | DOAJ Directory of Open Access Journals; Walter De Gruyter: Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Broad-crested weirs Civil engineering Computational fluid dynamics Computer applications Computer simulation Contraction Discharge coefficient Downstream effects Flooding Floods Flow simulation Fluid flow frontal broad-crested weir Geometry Hydraulics Levees Mathematical models Numerical simulations Overtopping Physical simulation River systems Rivers rough weir crest shallow flow modelling Shallow water Simulation Slope Slopes Spillways Surface roughness Topography (geology) Upstream Vertical flow Vertical mixing Weirs |
title | Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20a%20shallow-water%20model%20for%20simulating%20flow%20over%20trapezoidal%20broad-crested%20weirs&rft.jtitle=Journal%20of%20Hydrology%20and%20Hydromechanics&rft.au=%C5%98%C3%ADha,%20Jarom%C3%ADr&rft.date=2019-12-01&rft.volume=67&rft.issue=4&rft.spage=322&rft.epage=328&rft.pages=322-328&rft.issn=0042-790X&rft.eissn=0042-790X&rft_id=info:doi/10.2478/johh-2019-0014&rft_dat=%3Cproquest_doaj_%3E2316959288%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316959288&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_aa55d71ce40547149541ea2472500fb9&rfr_iscdi=true |