The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities

The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Abri, Faranak, Siami-Namini, Sima, Mahdi Adl Khanghah, Fahimeh Mirza Soltani, Namin, Akbar Siami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abri, Faranak
Siami-Namini, Sima
Mahdi Adl Khanghah
Fahimeh Mirza Soltani
Namin, Akbar Siami
description The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2316915452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316915452</sourcerecordid><originalsourceid>FETCH-proquest_journals_23169154523</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLOjmrM5adCjoIB06JMu-5WRttumhf59BP6DTe3jeCQkoY0m0TimdkdD7No5jmq0o5ywg17JBOKGT1j2FqRGshKOoG2UQhLlDgdjBAYUzyjwg18J7JRU6D8qM2GPdf-GCzkaFeMN50AaduCmteoV-QaZSaI_hr3Oy3G3LfB91zr4G9H3V2sGZkSrKkmyT8JRT9t_1AevwQ5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316915452</pqid></control><display><type>article</type><title>The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities</title><source>Free E- Journals</source><creator>Abri, Faranak ; Siami-Namini, Sima ; Mahdi Adl Khanghah ; Fahimeh Mirza Soltani ; Namin, Akbar Siami</creator><creatorcontrib>Abri, Faranak ; Siami-Namini, Sima ; Mahdi Adl Khanghah ; Fahimeh Mirza Soltani ; Namin, Akbar Siami</creatorcontrib><description>The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Classifiers ; Deep learning ; Machine learning ; Malware</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Abri, Faranak</creatorcontrib><creatorcontrib>Siami-Namini, Sima</creatorcontrib><creatorcontrib>Mahdi Adl Khanghah</creatorcontrib><creatorcontrib>Fahimeh Mirza Soltani</creatorcontrib><creatorcontrib>Namin, Akbar Siami</creatorcontrib><title>The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities</title><title>arXiv.org</title><description>The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Malware</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLOjmrM5adCjoIB06JMu-5WRttumhf59BP6DTe3jeCQkoY0m0TimdkdD7No5jmq0o5ywg17JBOKGT1j2FqRGshKOoG2UQhLlDgdjBAYUzyjwg18J7JRU6D8qM2GPdf-GCzkaFeMN50AaduCmteoV-QaZSaI_hr3Oy3G3LfB91zr4G9H3V2sGZkSrKkmyT8JRT9t_1AevwQ5A</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Abri, Faranak</creator><creator>Siami-Namini, Sima</creator><creator>Mahdi Adl Khanghah</creator><creator>Fahimeh Mirza Soltani</creator><creator>Namin, Akbar Siami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191121</creationdate><title>The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities</title><author>Abri, Faranak ; Siami-Namini, Sima ; Mahdi Adl Khanghah ; Fahimeh Mirza Soltani ; Namin, Akbar Siami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23169154523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Malware</topic><toplevel>online_resources</toplevel><creatorcontrib>Abri, Faranak</creatorcontrib><creatorcontrib>Siami-Namini, Sima</creatorcontrib><creatorcontrib>Mahdi Adl Khanghah</creatorcontrib><creatorcontrib>Fahimeh Mirza Soltani</creatorcontrib><creatorcontrib>Namin, Akbar Siami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abri, Faranak</au><au>Siami-Namini, Sima</au><au>Mahdi Adl Khanghah</au><au>Fahimeh Mirza Soltani</au><au>Namin, Akbar Siami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities</atitle><jtitle>arXiv.org</jtitle><date>2019-11-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2316915452
source Free E- Journals
subjects Accuracy
Algorithms
Classifiers
Deep learning
Machine learning
Malware
title The Performance of Machine and Deep Learning Classifiers in Detecting Zero-Day Vulnerabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Performance%20of%20Machine%20and%20Deep%20Learning%20Classifiers%20in%20Detecting%20Zero-Day%20Vulnerabilities&rft.jtitle=arXiv.org&rft.au=Abri,%20Faranak&rft.date=2019-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2316915452%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316915452&rft_id=info:pmid/&rfr_iscdi=true