Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty

In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2019-01, Vol.37 (5), p.6457-6470
Hauptverfasser: Dehghan, Ehsan, Amiri, Maghsoud, Shafiei Nikabadi, Mohsen, Jabbarzadeh, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6470
container_issue 5
container_start_page 6457
container_title Journal of intelligent & fuzzy systems
container_volume 37
creator Dehghan, Ehsan
Amiri, Maghsoud
Shafiei Nikabadi, Mohsen
Jabbarzadeh, Armin
description In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.
doi_str_mv 10.3233/JIFS-18117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316826454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316826454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKc3_oKAd0I0H03aXMpwczL0Qr0OaZpsnV1Tk1bpfr2Z8-qcAw_v4X0AuCb4jlHG7p-X8zdECkLyEzAhRc5RIUV-mnYsMkRoJs7BRYxbjEnOKZ4A8-K_bQODL4fYQzfs9yPsgl8HvdvV7Ro6H6BpfLQVarzvYBy6rhmh2ei6ha3tf3z4hJWN9bqFQ1vZADdjGeoqHcaGPlH9eAnOnG6ivfqfU_Axf3yfPaHV62I5e1ghQ7nsEXPGaCYc5dTKrBIV1iWuBGNFoTOniXNYOiMoM5ISljoSyp2QhuSmJBJzNgU3x9xU4GuwsVdbP4Q2vVSUEVFQkfEsUbdHygQfY7BOdaHe6TAqgtVBojpIVH8S2S-R02Xo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316826454</pqid></control><display><type>article</type><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><source>EBSCOhost Business Source Complete</source><creator>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</creator><creatorcontrib>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</creatorcontrib><description>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-18117</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Closed loops ; Computer simulation ; Mathematical models ; Network design ; Nonlinear programming ; Parameter uncertainty ; Robustness (mathematics) ; Supply chains</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2019-01, Vol.37 (5), p.6457-6470</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</citedby><cites>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dehghan, Ehsan</creatorcontrib><creatorcontrib>Amiri, Maghsoud</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><creatorcontrib>Jabbarzadeh, Armin</creatorcontrib><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</description><subject>Closed loops</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Network design</subject><subject>Nonlinear programming</subject><subject>Parameter uncertainty</subject><subject>Robustness (mathematics)</subject><subject>Supply chains</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKc3_oKAd0I0H03aXMpwczL0Qr0OaZpsnV1Tk1bpfr2Z8-qcAw_v4X0AuCb4jlHG7p-X8zdECkLyEzAhRc5RIUV-mnYsMkRoJs7BRYxbjEnOKZ4A8-K_bQODL4fYQzfs9yPsgl8HvdvV7Ro6H6BpfLQVarzvYBy6rhmh2ei6ha3tf3z4hJWN9bqFQ1vZADdjGeoqHcaGPlH9eAnOnG6ivfqfU_Axf3yfPaHV62I5e1ghQ7nsEXPGaCYc5dTKrBIV1iWuBGNFoTOniXNYOiMoM5ISljoSyp2QhuSmJBJzNgU3x9xU4GuwsVdbP4Q2vVSUEVFQkfEsUbdHygQfY7BOdaHe6TAqgtVBojpIVH8S2S-R02Xo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Dehghan, Ehsan</creator><creator>Amiri, Maghsoud</creator><creator>Shafiei Nikabadi, Mohsen</creator><creator>Jabbarzadeh, Armin</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><author>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed loops</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Network design</topic><topic>Nonlinear programming</topic><topic>Parameter uncertainty</topic><topic>Robustness (mathematics)</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Ehsan</creatorcontrib><creatorcontrib>Amiri, Maghsoud</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><creatorcontrib>Jabbarzadeh, Armin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, Ehsan</au><au>Amiri, Maghsoud</au><au>Shafiei Nikabadi, Mohsen</au><au>Jabbarzadeh, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>5</issue><spage>6457</spage><epage>6470</epage><pages>6457-6470</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-18117</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (5), p.6457-6470
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2316826454
source EBSCOhost Business Source Complete
subjects Closed loops
Computer simulation
Mathematical models
Network design
Nonlinear programming
Parameter uncertainty
Robustness (mathematics)
Supply chains
title Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20robust%20fuzzy%20programming%20for%20closed-loop%20supply%20chain%20network%20design%20under%20hybrid%20uncertainty&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Dehghan,%20Ehsan&rft.date=2019-01-01&rft.volume=37&rft.issue=5&rft.spage=6457&rft.epage=6470&rft.pages=6457-6470&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-18117&rft_dat=%3Cproquest_cross%3E2316826454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316826454&rft_id=info:pmid/&rfr_iscdi=true