Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty
In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-ba...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.37 (5), p.6457-6470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6470 |
---|---|
container_issue | 5 |
container_start_page | 6457 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 37 |
creator | Dehghan, Ehsan Amiri, Maghsoud Shafiei Nikabadi, Mohsen Jabbarzadeh, Armin |
description | In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model. |
doi_str_mv | 10.3233/JIFS-18117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316826454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316826454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKc3_oKAd0I0H03aXMpwczL0Qr0OaZpsnV1Tk1bpfr2Z8-qcAw_v4X0AuCb4jlHG7p-X8zdECkLyEzAhRc5RIUV-mnYsMkRoJs7BRYxbjEnOKZ4A8-K_bQODL4fYQzfs9yPsgl8HvdvV7Ro6H6BpfLQVarzvYBy6rhmh2ei6ha3tf3z4hJWN9bqFQ1vZADdjGeoqHcaGPlH9eAnOnG6ivfqfU_Axf3yfPaHV62I5e1ghQ7nsEXPGaCYc5dTKrBIV1iWuBGNFoTOniXNYOiMoM5ISljoSyp2QhuSmJBJzNgU3x9xU4GuwsVdbP4Q2vVSUEVFQkfEsUbdHygQfY7BOdaHe6TAqgtVBojpIVH8S2S-R02Xo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316826454</pqid></control><display><type>article</type><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><source>EBSCOhost Business Source Complete</source><creator>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</creator><creatorcontrib>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</creatorcontrib><description>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-18117</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Closed loops ; Computer simulation ; Mathematical models ; Network design ; Nonlinear programming ; Parameter uncertainty ; Robustness (mathematics) ; Supply chains</subject><ispartof>Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (5), p.6457-6470</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</citedby><cites>FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dehghan, Ehsan</creatorcontrib><creatorcontrib>Amiri, Maghsoud</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><creatorcontrib>Jabbarzadeh, Armin</creatorcontrib><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><title>Journal of intelligent & fuzzy systems</title><description>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</description><subject>Closed loops</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Network design</subject><subject>Nonlinear programming</subject><subject>Parameter uncertainty</subject><subject>Robustness (mathematics)</subject><subject>Supply chains</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKc3_oKAd0I0H03aXMpwczL0Qr0OaZpsnV1Tk1bpfr2Z8-qcAw_v4X0AuCb4jlHG7p-X8zdECkLyEzAhRc5RIUV-mnYsMkRoJs7BRYxbjEnOKZ4A8-K_bQODL4fYQzfs9yPsgl8HvdvV7Ro6H6BpfLQVarzvYBy6rhmh2ei6ha3tf3z4hJWN9bqFQ1vZADdjGeoqHcaGPlH9eAnOnG6ivfqfU_Axf3yfPaHV62I5e1ghQ7nsEXPGaCYc5dTKrBIV1iWuBGNFoTOniXNYOiMoM5ISljoSyp2QhuSmJBJzNgU3x9xU4GuwsVdbP4Q2vVSUEVFQkfEsUbdHygQfY7BOdaHe6TAqgtVBojpIVH8S2S-R02Xo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Dehghan, Ehsan</creator><creator>Amiri, Maghsoud</creator><creator>Shafiei Nikabadi, Mohsen</creator><creator>Jabbarzadeh, Armin</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</title><author>Dehghan, Ehsan ; Amiri, Maghsoud ; Shafiei Nikabadi, Mohsen ; Jabbarzadeh, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-3fcca36f252e94d6d0ab0d63388a4fa1ff09fc623c9213811125f69c17cb19053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed loops</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Network design</topic><topic>Nonlinear programming</topic><topic>Parameter uncertainty</topic><topic>Robustness (mathematics)</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Ehsan</creatorcontrib><creatorcontrib>Amiri, Maghsoud</creatorcontrib><creatorcontrib>Shafiei Nikabadi, Mohsen</creatorcontrib><creatorcontrib>Jabbarzadeh, Armin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, Ehsan</au><au>Amiri, Maghsoud</au><au>Shafiei Nikabadi, Mohsen</au><au>Jabbarzadeh, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>5</issue><spage>6457</spage><epage>6470</epage><pages>6457-6470</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a mixed-integer nonlinear programming model is developed for a general edible oil closed loop supply chain network design problem under hybrid uncertainty which is then transformed to its linear counterpart. In order to cope with the hybrid uncertainty in input parameters, scenario-based and fuzzy- based parameters, a new approach is proposed including a novel robust fuzzy programming and an efficient method based on the Me measure. Furthermore, the performance of the proposed model is compared with that of other models. Finally, numerical studies and simulation are performed to verify our mathematical formulation and demonstrate the benefits of the proposed model.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-18117</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (5), p.6457-6470 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2316826454 |
source | EBSCOhost Business Source Complete |
subjects | Closed loops Computer simulation Mathematical models Network design Nonlinear programming Parameter uncertainty Robustness (mathematics) Supply chains |
title | Novel robust fuzzy programming for closed-loop supply chain network design under hybrid uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20robust%20fuzzy%20programming%20for%20closed-loop%20supply%20chain%20network%20design%20under%20hybrid%20uncertainty&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Dehghan,%20Ehsan&rft.date=2019-01-01&rft.volume=37&rft.issue=5&rft.spage=6457&rft.epage=6470&rft.pages=6457-6470&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-18117&rft_dat=%3Cproquest_cross%3E2316826454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316826454&rft_id=info:pmid/&rfr_iscdi=true |