Studies of thermal behavior of metoprolol tartrate

The thermal behavior of metoprolol tartrate [(2 R ,3 R )-2,3-dihydroxybutanedioic acid; 1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol], a β -adrenergic blocker used in the treatment of hypertension and other cardiac problems, was investigated using thermogravimetry (TG), differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2019-12, Vol.138 (5), p.3653-3663
Hauptverfasser: Ciciliati, Mariani A., Cavalheiro, Éder T. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3663
container_issue 5
container_start_page 3653
container_title Journal of thermal analysis and calorimetry
container_volume 138
creator Ciciliati, Mariani A.
Cavalheiro, Éder T. G.
description The thermal behavior of metoprolol tartrate [(2 R ,3 R )-2,3-dihydroxybutanedioic acid; 1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol], a β -adrenergic blocker used in the treatment of hypertension and other cardiac problems, was investigated using thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), evolved gas analysis by thermogravimetry coupled with infrared spectroscopy (TG-FTIR), hot-stage microscopy and high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). TG/DTA and TG-FTIR showed that metoprolol melts at 123.3 °C and 124.2 (N 2 and air, respectively) and started decomposing at 155.4 °C (in N 2 ) and 152.6 °C (in air) in two steps of mass loss with the release of carbon monoxide, carbon dioxide and water from the decomposition of tartaric acid in the first step and carbon dioxide, ammonia, dimethyl ether, 1-ethoxy-4-methylbenzene and isopropyl isocyanate in the second step. DSC curves demonstrated that the sample melts at 121.7 °C, quite similar to that observed in DTA, with no recrystallization on cooling. Hot-stage microscopy allowed seeing the melting process of metoprolol, which appeared in a temperature similar to that observed in the other thermal analytical techniques. HPLC–MS analysis permitted characterizing some solid intermediates of drug degradation, indicating that probably there is an intermolecular interaction between the molecules during the decomposition, creating larger molecules. Based on these results, a tentative mechanism for metoprolol tartrate thermal decomposition was proposed.
doi_str_mv 10.1007/s10973-019-08849-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2316818825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606399718</galeid><sourcerecordid>A606399718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7555de6f3cf9ff03141b327fbd0c79242fd7dd0f2e1d6c5cd50bc80ac4f2d8253</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKcFTx62TpLdTXIsxY9CQbB6Dtl8tFu2TU2yov_e1BWkF8lhhuF5MsObZdcIJgiA3gUEnJICEC-AsZIX9CQboYqxAnNcn6aepL5GFZxnFyFsAIBzQKMML2OvWxNyZ_O4Nn4ru7wxa_nROn-YbU10e-861-VR-uhlNJfZmZVdMFe_dZy9Pdy_zp6KxfPjfDZdFKrEPBa0qiptakuU5dYCQSVqCKa20aAoxyW2mmoNFhuka1UpXUGjGEhVWqwZrsg4uxn-TfvfexOi2Lje79JKgQmqGWIDNRmoleyMaHfWpSNVetpsW-V2xrZpPq2hJpxTxJJweyQkJprPuJJ9CGK-fDlm8cAq70Lwxoq9b7fSfwkE4hC8GIIXKXjxE7ygSSKDFBK8Wxn_d_c_1jfCroSy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316818825</pqid></control><display><type>article</type><title>Studies of thermal behavior of metoprolol tartrate</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ciciliati, Mariani A. ; Cavalheiro, Éder T. G.</creator><creatorcontrib>Ciciliati, Mariani A. ; Cavalheiro, Éder T. G.</creatorcontrib><description>The thermal behavior of metoprolol tartrate [(2 R ,3 R )-2,3-dihydroxybutanedioic acid; 1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol], a β -adrenergic blocker used in the treatment of hypertension and other cardiac problems, was investigated using thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), evolved gas analysis by thermogravimetry coupled with infrared spectroscopy (TG-FTIR), hot-stage microscopy and high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). TG/DTA and TG-FTIR showed that metoprolol melts at 123.3 °C and 124.2 (N 2 and air, respectively) and started decomposing at 155.4 °C (in N 2 ) and 152.6 °C (in air) in two steps of mass loss with the release of carbon monoxide, carbon dioxide and water from the decomposition of tartaric acid in the first step and carbon dioxide, ammonia, dimethyl ether, 1-ethoxy-4-methylbenzene and isopropyl isocyanate in the second step. DSC curves demonstrated that the sample melts at 121.7 °C, quite similar to that observed in DTA, with no recrystallization on cooling. Hot-stage microscopy allowed seeing the melting process of metoprolol, which appeared in a temperature similar to that observed in the other thermal analytical techniques. HPLC–MS analysis permitted characterizing some solid intermediates of drug degradation, indicating that probably there is an intermolecular interaction between the molecules during the decomposition, creating larger molecules. Based on these results, a tentative mechanism for metoprolol tartrate thermal decomposition was proposed.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08849-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ammonia ; Analysis ; Analytical Chemistry ; Calorimetry ; Carbon ; Carbon dioxide ; Carbon monoxide ; Care and treatment ; Chemistry ; Chemistry and Materials Science ; Coupling (molecular) ; Decomposition ; Differential scanning calorimetry ; Differential thermal analysis ; Dimethyl ether ; Fourier transforms ; Gas analysis ; High performance liquid chromatography ; Hypertension ; Infrared analysis ; Infrared spectroscopy ; Inorganic Chemistry ; Isocyanates ; Mass spectrometry ; Measurement Science and Instrumentation ; Melts ; Microscopy ; Physical Chemistry ; Polymer Sciences ; Recrystallization ; Tartaric acid ; Thermal decomposition ; Thermodynamic properties ; Thermogravimetric analysis ; Thermogravimetry ; Warfarin</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-12, Vol.138 (5), p.3653-3663</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7555de6f3cf9ff03141b327fbd0c79242fd7dd0f2e1d6c5cd50bc80ac4f2d8253</citedby><cites>FETCH-LOGICAL-c429t-7555de6f3cf9ff03141b327fbd0c79242fd7dd0f2e1d6c5cd50bc80ac4f2d8253</cites><orcidid>0000-0002-5186-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-019-08849-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-019-08849-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ciciliati, Mariani A.</creatorcontrib><creatorcontrib>Cavalheiro, Éder T. G.</creatorcontrib><title>Studies of thermal behavior of metoprolol tartrate</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The thermal behavior of metoprolol tartrate [(2 R ,3 R )-2,3-dihydroxybutanedioic acid; 1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol], a β -adrenergic blocker used in the treatment of hypertension and other cardiac problems, was investigated using thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), evolved gas analysis by thermogravimetry coupled with infrared spectroscopy (TG-FTIR), hot-stage microscopy and high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). TG/DTA and TG-FTIR showed that metoprolol melts at 123.3 °C and 124.2 (N 2 and air, respectively) and started decomposing at 155.4 °C (in N 2 ) and 152.6 °C (in air) in two steps of mass loss with the release of carbon monoxide, carbon dioxide and water from the decomposition of tartaric acid in the first step and carbon dioxide, ammonia, dimethyl ether, 1-ethoxy-4-methylbenzene and isopropyl isocyanate in the second step. DSC curves demonstrated that the sample melts at 121.7 °C, quite similar to that observed in DTA, with no recrystallization on cooling. Hot-stage microscopy allowed seeing the melting process of metoprolol, which appeared in a temperature similar to that observed in the other thermal analytical techniques. HPLC–MS analysis permitted characterizing some solid intermediates of drug degradation, indicating that probably there is an intermolecular interaction between the molecules during the decomposition, creating larger molecules. Based on these results, a tentative mechanism for metoprolol tartrate thermal decomposition was proposed.</description><subject>Ammonia</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Calorimetry</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Care and treatment</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupling (molecular)</subject><subject>Decomposition</subject><subject>Differential scanning calorimetry</subject><subject>Differential thermal analysis</subject><subject>Dimethyl ether</subject><subject>Fourier transforms</subject><subject>Gas analysis</subject><subject>High performance liquid chromatography</subject><subject>Hypertension</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Inorganic Chemistry</subject><subject>Isocyanates</subject><subject>Mass spectrometry</subject><subject>Measurement Science and Instrumentation</subject><subject>Melts</subject><subject>Microscopy</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Recrystallization</subject><subject>Tartaric acid</subject><subject>Thermal decomposition</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thermogravimetry</subject><subject>Warfarin</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFb_gKcFTx62TpLdTXIsxY9CQbB6Dtl8tFu2TU2yov_e1BWkF8lhhuF5MsObZdcIJgiA3gUEnJICEC-AsZIX9CQboYqxAnNcn6aepL5GFZxnFyFsAIBzQKMML2OvWxNyZ_O4Nn4ru7wxa_nROn-YbU10e-861-VR-uhlNJfZmZVdMFe_dZy9Pdy_zp6KxfPjfDZdFKrEPBa0qiptakuU5dYCQSVqCKa20aAoxyW2mmoNFhuka1UpXUGjGEhVWqwZrsg4uxn-TfvfexOi2Lje79JKgQmqGWIDNRmoleyMaHfWpSNVetpsW-V2xrZpPq2hJpxTxJJweyQkJprPuJJ9CGK-fDlm8cAq70Lwxoq9b7fSfwkE4hC8GIIXKXjxE7ygSSKDFBK8Wxn_d_c_1jfCroSy</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ciciliati, Mariani A.</creator><creator>Cavalheiro, Éder T. G.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-5186-3039</orcidid></search><sort><creationdate>20191201</creationdate><title>Studies of thermal behavior of metoprolol tartrate</title><author>Ciciliati, Mariani A. ; Cavalheiro, Éder T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7555de6f3cf9ff03141b327fbd0c79242fd7dd0f2e1d6c5cd50bc80ac4f2d8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Calorimetry</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Care and treatment</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupling (molecular)</topic><topic>Decomposition</topic><topic>Differential scanning calorimetry</topic><topic>Differential thermal analysis</topic><topic>Dimethyl ether</topic><topic>Fourier transforms</topic><topic>Gas analysis</topic><topic>High performance liquid chromatography</topic><topic>Hypertension</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Inorganic Chemistry</topic><topic>Isocyanates</topic><topic>Mass spectrometry</topic><topic>Measurement Science and Instrumentation</topic><topic>Melts</topic><topic>Microscopy</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Recrystallization</topic><topic>Tartaric acid</topic><topic>Thermal decomposition</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thermogravimetry</topic><topic>Warfarin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciciliati, Mariani A.</creatorcontrib><creatorcontrib>Cavalheiro, Éder T. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciciliati, Mariani A.</au><au>Cavalheiro, Éder T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies of thermal behavior of metoprolol tartrate</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>138</volume><issue>5</issue><spage>3653</spage><epage>3663</epage><pages>3653-3663</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The thermal behavior of metoprolol tartrate [(2 R ,3 R )-2,3-dihydroxybutanedioic acid; 1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol], a β -adrenergic blocker used in the treatment of hypertension and other cardiac problems, was investigated using thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), evolved gas analysis by thermogravimetry coupled with infrared spectroscopy (TG-FTIR), hot-stage microscopy and high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). TG/DTA and TG-FTIR showed that metoprolol melts at 123.3 °C and 124.2 (N 2 and air, respectively) and started decomposing at 155.4 °C (in N 2 ) and 152.6 °C (in air) in two steps of mass loss with the release of carbon monoxide, carbon dioxide and water from the decomposition of tartaric acid in the first step and carbon dioxide, ammonia, dimethyl ether, 1-ethoxy-4-methylbenzene and isopropyl isocyanate in the second step. DSC curves demonstrated that the sample melts at 121.7 °C, quite similar to that observed in DTA, with no recrystallization on cooling. Hot-stage microscopy allowed seeing the melting process of metoprolol, which appeared in a temperature similar to that observed in the other thermal analytical techniques. HPLC–MS analysis permitted characterizing some solid intermediates of drug degradation, indicating that probably there is an intermolecular interaction between the molecules during the decomposition, creating larger molecules. Based on these results, a tentative mechanism for metoprolol tartrate thermal decomposition was proposed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08849-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5186-3039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2019-12, Vol.138 (5), p.3653-3663
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2316818825
source SpringerLink Journals - AutoHoldings
subjects Ammonia
Analysis
Analytical Chemistry
Calorimetry
Carbon
Carbon dioxide
Carbon monoxide
Care and treatment
Chemistry
Chemistry and Materials Science
Coupling (molecular)
Decomposition
Differential scanning calorimetry
Differential thermal analysis
Dimethyl ether
Fourier transforms
Gas analysis
High performance liquid chromatography
Hypertension
Infrared analysis
Infrared spectroscopy
Inorganic Chemistry
Isocyanates
Mass spectrometry
Measurement Science and Instrumentation
Melts
Microscopy
Physical Chemistry
Polymer Sciences
Recrystallization
Tartaric acid
Thermal decomposition
Thermodynamic properties
Thermogravimetric analysis
Thermogravimetry
Warfarin
title Studies of thermal behavior of metoprolol tartrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20of%20thermal%20behavior%20of%20metoprolol%20tartrate&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ciciliati,%20Mariani%20A.&rft.date=2019-12-01&rft.volume=138&rft.issue=5&rft.spage=3653&rft.epage=3663&rft.pages=3653-3663&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08849-7&rft_dat=%3Cgale_proqu%3EA606399718%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316818825&rft_id=info:pmid/&rft_galeid=A606399718&rfr_iscdi=true