Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes
By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the q...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2020-01, Vol.814, p.152340, Article 152340 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152340 |
container_title | Journal of alloys and compounds |
container_volume | 814 |
creator | Wang, Chuang Wang, Jianrui Jiang, Jing Xin, Shuangyu Zhu, Ge |
description | By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD.
•Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors. |
doi_str_mv | 10.1016/j.jallcom.2019.152340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316774295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819335868</els_id><sourcerecordid>2316774295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</originalsourceid><addsrcrecordid>eNqFkM9q3DAQxkVpINtNHiEg6LF4qz-2bPdSSmjSwIaFpLnkIhRpvJaxpY0kp-w79KGr7e49h2Fm4DffzHwIXVGyooSKr8NqUOOo_bRihLYrWjFekg9oQZuaF6UQ7Ue0IC2rioY3zTn6FONASCY5XaC_D2Ag2q3Dyhk8KTdnqT3W3qXgR5x6yPU0QdBWjXg3qjgpvA0ADj879mg35bd7x77gXe9jjoD_2NTj3m57_Dorl-YJQ9dZbcHpPe4OQG8T4DETCcNkU7Jui431-YwLdNapMcLlKS_R083P39e_ivXm9u76x7rQTNSpUFpzJbShla51U4qyIVpBd-hZq5hQjJtSi4rTWuj6xbCWUUNqZpSAljLDl-jzUXcX_OsMMcnBz8HllZJxKuq6ZG2VqepI6eBjDNDJXbCTCntJiTwYLwd5Ml4ejJdH4_Pc9-Mc5BfeLAQZ_78PxgbQSRpv31H4B8yQkPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316774295</pqid></control><display><type>article</type><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</creator><creatorcontrib>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</creatorcontrib><description>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD.
•Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152340</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorption ; Backlights ; Diffraction patterns ; Efficiency ; High quantum efficiency ; Lattice vacancies ; LED ; Light emitting diodes ; Luminescence ; Luminous intensity ; Optical properties ; Organic light emitting diodes ; Phosphor ; Phosphors ; Quantum efficiency ; Raman spectra ; Raw materials ; Redesign ; Stoichiometry ; Thermal stability ; White light ; Zinc oxide ; Zinc silicates ; Zn2SiO4:Mn2</subject><ispartof>Journal of alloys and compounds, 2020-01, Vol.814, p.152340, Article 152340</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</citedby><cites>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</cites><orcidid>0000-0002-8480-0763 ; 0000-0002-2109-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152340$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Chuang</creatorcontrib><creatorcontrib>Wang, Jianrui</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Xin, Shuangyu</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><title>Journal of alloys and compounds</title><description>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD.
•Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</description><subject>Absorption</subject><subject>Backlights</subject><subject>Diffraction patterns</subject><subject>Efficiency</subject><subject>High quantum efficiency</subject><subject>Lattice vacancies</subject><subject>LED</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Luminous intensity</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Phosphor</subject><subject>Phosphors</subject><subject>Quantum efficiency</subject><subject>Raman spectra</subject><subject>Raw materials</subject><subject>Redesign</subject><subject>Stoichiometry</subject><subject>Thermal stability</subject><subject>White light</subject><subject>Zinc oxide</subject><subject>Zinc silicates</subject><subject>Zn2SiO4:Mn2</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9q3DAQxkVpINtNHiEg6LF4qz-2bPdSSmjSwIaFpLnkIhRpvJaxpY0kp-w79KGr7e49h2Fm4DffzHwIXVGyooSKr8NqUOOo_bRihLYrWjFekg9oQZuaF6UQ7Ue0IC2rioY3zTn6FONASCY5XaC_D2Ag2q3Dyhk8KTdnqT3W3qXgR5x6yPU0QdBWjXg3qjgpvA0ADj879mg35bd7x77gXe9jjoD_2NTj3m57_Dorl-YJQ9dZbcHpPe4OQG8T4DETCcNkU7Jui431-YwLdNapMcLlKS_R083P39e_ivXm9u76x7rQTNSpUFpzJbShla51U4qyIVpBd-hZq5hQjJtSi4rTWuj6xbCWUUNqZpSAljLDl-jzUXcX_OsMMcnBz8HllZJxKuq6ZG2VqepI6eBjDNDJXbCTCntJiTwYLwd5Ml4ejJdH4_Pc9-Mc5BfeLAQZ_78PxgbQSRpv31H4B8yQkPg</recordid><startdate>20200125</startdate><enddate>20200125</enddate><creator>Wang, Chuang</creator><creator>Wang, Jianrui</creator><creator>Jiang, Jing</creator><creator>Xin, Shuangyu</creator><creator>Zhu, Ge</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8480-0763</orcidid><orcidid>https://orcid.org/0000-0002-2109-4857</orcidid></search><sort><creationdate>20200125</creationdate><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><author>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Backlights</topic><topic>Diffraction patterns</topic><topic>Efficiency</topic><topic>High quantum efficiency</topic><topic>Lattice vacancies</topic><topic>LED</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Luminous intensity</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Phosphor</topic><topic>Phosphors</topic><topic>Quantum efficiency</topic><topic>Raman spectra</topic><topic>Raw materials</topic><topic>Redesign</topic><topic>Stoichiometry</topic><topic>Thermal stability</topic><topic>White light</topic><topic>Zinc oxide</topic><topic>Zinc silicates</topic><topic>Zn2SiO4:Mn2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuang</creatorcontrib><creatorcontrib>Wang, Jianrui</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Xin, Shuangyu</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuang</au><au>Wang, Jianrui</au><au>Jiang, Jing</au><au>Xin, Shuangyu</au><au>Zhu, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-01-25</date><risdate>2020</risdate><volume>814</volume><spage>152340</spage><pages>152340-</pages><artnum>152340</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD.
•Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152340</doi><orcidid>https://orcid.org/0000-0002-8480-0763</orcidid><orcidid>https://orcid.org/0000-0002-2109-4857</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2020-01, Vol.814, p.152340, Article 152340 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2316774295 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Absorption Backlights Diffraction patterns Efficiency High quantum efficiency Lattice vacancies LED Light emitting diodes Luminescence Luminous intensity Optical properties Organic light emitting diodes Phosphor Phosphors Quantum efficiency Raman spectra Raw materials Redesign Stoichiometry Thermal stability White light Zinc oxide Zinc silicates Zn2SiO4:Mn2 |
title | Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redesign%20and%20manually%20control%20the%20commercial%20plasma%20green%20Zn2SiO4:Mn2+%20phosphor%20with%20high%20quantum%20efficiency%20for%20white%20light%20emitting%20diodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Wang,%20Chuang&rft.date=2020-01-25&rft.volume=814&rft.spage=152340&rft.pages=152340-&rft.artnum=152340&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152340&rft_dat=%3Cproquest_cross%3E2316774295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316774295&rft_id=info:pmid/&rft_els_id=S0925838819335868&rfr_iscdi=true |