Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes

By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-01, Vol.814, p.152340, Article 152340
Hauptverfasser: Wang, Chuang, Wang, Jianrui, Jiang, Jing, Xin, Shuangyu, Zhu, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152340
container_title Journal of alloys and compounds
container_volume 814
creator Wang, Chuang
Wang, Jianrui
Jiang, Jing
Xin, Shuangyu
Zhu, Ge
description By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD. •Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.
doi_str_mv 10.1016/j.jallcom.2019.152340
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316774295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819335868</els_id><sourcerecordid>2316774295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</originalsourceid><addsrcrecordid>eNqFkM9q3DAQxkVpINtNHiEg6LF4qz-2bPdSSmjSwIaFpLnkIhRpvJaxpY0kp-w79KGr7e49h2Fm4DffzHwIXVGyooSKr8NqUOOo_bRihLYrWjFekg9oQZuaF6UQ7Ue0IC2rioY3zTn6FONASCY5XaC_D2Ag2q3Dyhk8KTdnqT3W3qXgR5x6yPU0QdBWjXg3qjgpvA0ADj879mg35bd7x77gXe9jjoD_2NTj3m57_Dorl-YJQ9dZbcHpPe4OQG8T4DETCcNkU7Jui431-YwLdNapMcLlKS_R083P39e_ivXm9u76x7rQTNSpUFpzJbShla51U4qyIVpBd-hZq5hQjJtSi4rTWuj6xbCWUUNqZpSAljLDl-jzUXcX_OsMMcnBz8HllZJxKuq6ZG2VqepI6eBjDNDJXbCTCntJiTwYLwd5Ml4ejJdH4_Pc9-Mc5BfeLAQZ_78PxgbQSRpv31H4B8yQkPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316774295</pqid></control><display><type>article</type><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</creator><creatorcontrib>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</creatorcontrib><description>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD. •Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152340</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Absorption ; Backlights ; Diffraction patterns ; Efficiency ; High quantum efficiency ; Lattice vacancies ; LED ; Light emitting diodes ; Luminescence ; Luminous intensity ; Optical properties ; Organic light emitting diodes ; Phosphor ; Phosphors ; Quantum efficiency ; Raman spectra ; Raw materials ; Redesign ; Stoichiometry ; Thermal stability ; White light ; Zinc oxide ; Zinc silicates ; Zn2SiO4:Mn2</subject><ispartof>Journal of alloys and compounds, 2020-01, Vol.814, p.152340, Article 152340</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</citedby><cites>FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</cites><orcidid>0000-0002-8480-0763 ; 0000-0002-2109-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152340$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Chuang</creatorcontrib><creatorcontrib>Wang, Jianrui</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Xin, Shuangyu</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><title>Journal of alloys and compounds</title><description>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD. •Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</description><subject>Absorption</subject><subject>Backlights</subject><subject>Diffraction patterns</subject><subject>Efficiency</subject><subject>High quantum efficiency</subject><subject>Lattice vacancies</subject><subject>LED</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Luminous intensity</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Phosphor</subject><subject>Phosphors</subject><subject>Quantum efficiency</subject><subject>Raman spectra</subject><subject>Raw materials</subject><subject>Redesign</subject><subject>Stoichiometry</subject><subject>Thermal stability</subject><subject>White light</subject><subject>Zinc oxide</subject><subject>Zinc silicates</subject><subject>Zn2SiO4:Mn2</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9q3DAQxkVpINtNHiEg6LF4qz-2bPdSSmjSwIaFpLnkIhRpvJaxpY0kp-w79KGr7e49h2Fm4DffzHwIXVGyooSKr8NqUOOo_bRihLYrWjFekg9oQZuaF6UQ7Ue0IC2rioY3zTn6FONASCY5XaC_D2Ag2q3Dyhk8KTdnqT3W3qXgR5x6yPU0QdBWjXg3qjgpvA0ADj879mg35bd7x77gXe9jjoD_2NTj3m57_Dorl-YJQ9dZbcHpPe4OQG8T4DETCcNkU7Jui431-YwLdNapMcLlKS_R083P39e_ivXm9u76x7rQTNSpUFpzJbShla51U4qyIVpBd-hZq5hQjJtSi4rTWuj6xbCWUUNqZpSAljLDl-jzUXcX_OsMMcnBz8HllZJxKuq6ZG2VqepI6eBjDNDJXbCTCntJiTwYLwd5Ml4ejJdH4_Pc9-Mc5BfeLAQZ_78PxgbQSRpv31H4B8yQkPg</recordid><startdate>20200125</startdate><enddate>20200125</enddate><creator>Wang, Chuang</creator><creator>Wang, Jianrui</creator><creator>Jiang, Jing</creator><creator>Xin, Shuangyu</creator><creator>Zhu, Ge</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8480-0763</orcidid><orcidid>https://orcid.org/0000-0002-2109-4857</orcidid></search><sort><creationdate>20200125</creationdate><title>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</title><author>Wang, Chuang ; Wang, Jianrui ; Jiang, Jing ; Xin, Shuangyu ; Zhu, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-acc3a6cd15c7c846480caefd15c29a26a23d4c653176c7bd2921d072da6e912d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Backlights</topic><topic>Diffraction patterns</topic><topic>Efficiency</topic><topic>High quantum efficiency</topic><topic>Lattice vacancies</topic><topic>LED</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Luminous intensity</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Phosphor</topic><topic>Phosphors</topic><topic>Quantum efficiency</topic><topic>Raman spectra</topic><topic>Raw materials</topic><topic>Redesign</topic><topic>Stoichiometry</topic><topic>Thermal stability</topic><topic>White light</topic><topic>Zinc oxide</topic><topic>Zinc silicates</topic><topic>Zn2SiO4:Mn2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuang</creatorcontrib><creatorcontrib>Wang, Jianrui</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Xin, Shuangyu</creatorcontrib><creatorcontrib>Zhu, Ge</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuang</au><au>Wang, Jianrui</au><au>Jiang, Jing</au><au>Xin, Shuangyu</au><au>Zhu, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-01-25</date><risdate>2020</risdate><volume>814</volume><spage>152340</spage><pages>152340-</pages><artnum>152340</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>By reduce the stoichiometry ratio of ZnO raw materials, we successfully redesign and tailor the luminescence properties of commercial plasma green Zn2SiO4:Mn2+ phosphors for using as white light emitting diodes phosphors due to the strong absorption intensity at 420 nm. When excited at 420 nm, the quantum efficiency of the best redesigned Zn2SiO4:Mn2+ green phosphor can reach 76.2% which is much higher than 1.26% of the original Zn2SiO4:Mn2+ phosphor. To make clear the mechanism of the strong absorption at 420 nm as well as the increasing quantum efficiency, several classical methods of investigation including Rietveld refinement, X-ray diffraction patterns, Raman spectra and PL/PLE spectra are measured in this study. When reducing ZnO raw materials, the increased randomly distributed oxygen vacancies will induce the deviation from the inversion center of symmetry lattice site and then increase the quantum efficiency. Moreover, the FWHM of the best redesigned Zn2SiO4:Mn2+ is narrower that of β-SiAlON:Eu2+ and commercial green phosphor LMS-520B which indicates the redesigned Zn2SiO4:Mn2+ is more suitable for using as backlights for LCD. The redesigned Zn2SiO4:Mn2+ phosphor can also exhibit 81.2% color purity and excellent thermal stability with only 30% emission intensity loss at 140 °C. In addition, with reduced ZnO, the long decay times of Zn2SiO4:Mn2+ phosphor caused by the restriction of parity-forbidden and spin-forbidden 4T1-6A1 transition of Mn2+ can decrease from 4.168 ms to 3.268 ms. All the results suggest its great potential applications as backlights for LCD. •Zn2SiO4:Mn2+ phosphors are redesigned to exhibit strong absorption at 420 nm.•The redesigned Zn2SiO4:Mn2+ phosphor quantum efficiency can reach 76.2%.•The FWHM of redesigned Zn2SiO4:Mn2+ is narrower than that of β-SiAlON:Eu2+.•The redesigned Zn2SiO4:Mn2+ can be used as WLED phosphors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152340</doi><orcidid>https://orcid.org/0000-0002-8480-0763</orcidid><orcidid>https://orcid.org/0000-0002-2109-4857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-01, Vol.814, p.152340, Article 152340
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2316774295
source Elsevier ScienceDirect Journals Complete
subjects Absorption
Backlights
Diffraction patterns
Efficiency
High quantum efficiency
Lattice vacancies
LED
Light emitting diodes
Luminescence
Luminous intensity
Optical properties
Organic light emitting diodes
Phosphor
Phosphors
Quantum efficiency
Raman spectra
Raw materials
Redesign
Stoichiometry
Thermal stability
White light
Zinc oxide
Zinc silicates
Zn2SiO4:Mn2
title Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redesign%20and%20manually%20control%20the%20commercial%20plasma%20green%20Zn2SiO4:Mn2+%20phosphor%20with%20high%20quantum%20efficiency%20for%20white%20light%20emitting%20diodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Wang,%20Chuang&rft.date=2020-01-25&rft.volume=814&rft.spage=152340&rft.pages=152340-&rft.artnum=152340&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152340&rft_dat=%3Cproquest_cross%3E2316774295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316774295&rft_id=info:pmid/&rft_els_id=S0925838819335868&rfr_iscdi=true