Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys

We investigated the phase stability of SmFe12-based compounds by experimental and computational first-principles approaches. The effect of particle size and alloy composition on the thermal decomposition rate is addressed. We show that decomposition begins with Sm evaporation from particle surface,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-01, Vol.813, p.152224, Article 152224
Hauptverfasser: Dirba, I., Harashima, Y., Sepehri-Amin, H., Ohkubo, T., Miyake, T., Hirosawa, S., Hono, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152224
container_title Journal of alloys and compounds
container_volume 813
creator Dirba, I.
Harashima, Y.
Sepehri-Amin, H.
Ohkubo, T.
Miyake, T.
Hirosawa, S.
Hono, K.
description We investigated the phase stability of SmFe12-based compounds by experimental and computational first-principles approaches. The effect of particle size and alloy composition on the thermal decomposition rate is addressed. We show that decomposition begins with Sm evaporation from particle surface, resulting in the formation of α-Fe and Fe2Ti phases. The decomposition rate scales inversely with particle size. A significant stabilizing effect can be realized by substituting Fe with phase stabilizing elements such as V or Ga. According to ab initio calculations, Ti, V, and Ga lower the formation energies. However, when the reduction in magnetic moment is considered, the most effective stabilizing element that can minimize the reduction of μ0M is Ga. These findings present a useful insight on the potential solutions for the development of bulk Sm(Fe0·8Co0.2)12-based magnets. •The phase stability of SmFe12-based compounds are investigated.•Decomposition begins with Sm evaporation from particle surface and its rate scales inversely with particle size.•The most effective stabilizing element with minimum reduction of μ0Ms is Ga.
doi_str_mv 10.1016/j.jallcom.2019.152224
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316774199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583881933470X</els_id><sourcerecordid>2316774199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b4e347a3f63c447acd666f0ff13b86cc597861123f3f340bac6ef71a48a140003</originalsourceid><addsrcrecordid>eNqFUMFKxDAQDaLguvoJQsBza9KkaXsSWVwVVjy4nkOaTtyUtqlJV1i_3izdu8xhBua9N_MeQreUpJRQcd-mreo67fo0I7RKaZ5lGT9DC1oWLOFCVOdoQaosT0pWlpfoKoSWkIhkdIHMdge-Vx1uIAqMLtjJugE7g7e7t4FmyXQYAY87FQCrocF2CtiNk-33PQ6Tqm1nf-3whaGDHoa4tAP-6NcQmXXkNDh-5g7hGl0Y1QW4OfUl-lw_bVcvyeb9-XX1uEk0J2xKag6MF4oZwTSPg26EEIYYQ1ldCq3zqigFpRkzsTiplRZgCqp4qSiPntgS3c26o3ffewiTbN3eD_GkzBgVRcFpVUVUPqO0dyF4MHL0tlf-ICmRx0hlK0-RymOkco408h5mHkQLPxa8DNrCoKGxHvQkG2f_UfgDh8uB5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316774199</pqid></control><display><type>article</type><title>Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dirba, I. ; Harashima, Y. ; Sepehri-Amin, H. ; Ohkubo, T. ; Miyake, T. ; Hirosawa, S. ; Hono, K.</creator><creatorcontrib>Dirba, I. ; Harashima, Y. ; Sepehri-Amin, H. ; Ohkubo, T. ; Miyake, T. ; Hirosawa, S. ; Hono, K.</creatorcontrib><description>We investigated the phase stability of SmFe12-based compounds by experimental and computational first-principles approaches. The effect of particle size and alloy composition on the thermal decomposition rate is addressed. We show that decomposition begins with Sm evaporation from particle surface, resulting in the formation of α-Fe and Fe2Ti phases. The decomposition rate scales inversely with particle size. A significant stabilizing effect can be realized by substituting Fe with phase stabilizing elements such as V or Ga. According to ab initio calculations, Ti, V, and Ga lower the formation energies. However, when the reduction in magnetic moment is considered, the most effective stabilizing element that can minimize the reduction of μ0M is Ga. These findings present a useful insight on the potential solutions for the development of bulk Sm(Fe0·8Co0.2)12-based magnets. •The phase stability of SmFe12-based compounds are investigated.•Decomposition begins with Sm evaporation from particle surface and its rate scales inversely with particle size.•The most effective stabilizing element with minimum reduction of μ0Ms is Ga.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152224</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloying elements ; Decomposition ; Density functional theory ; Evaporation rate ; First principles ; Free energy ; Gallium ; Heat of formation ; Magnetic moments ; Magnets ; Particle size ; Permanent magnets ; Phase stability ; Reduction ; SmFe11Ti ; Thermal decomposition ; ThMn12</subject><ispartof>Journal of alloys and compounds, 2020-01, Vol.813, p.152224, Article 152224</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b4e347a3f63c447acd666f0ff13b86cc597861123f3f340bac6ef71a48a140003</citedby><cites>FETCH-LOGICAL-c403t-b4e347a3f63c447acd666f0ff13b86cc597861123f3f340bac6ef71a48a140003</cites><orcidid>0000-0002-7856-7897 ; 0000-0001-7367-0193 ; 0000-0001-8511-2711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152224$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dirba, I.</creatorcontrib><creatorcontrib>Harashima, Y.</creatorcontrib><creatorcontrib>Sepehri-Amin, H.</creatorcontrib><creatorcontrib>Ohkubo, T.</creatorcontrib><creatorcontrib>Miyake, T.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Hono, K.</creatorcontrib><title>Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys</title><title>Journal of alloys and compounds</title><description>We investigated the phase stability of SmFe12-based compounds by experimental and computational first-principles approaches. The effect of particle size and alloy composition on the thermal decomposition rate is addressed. We show that decomposition begins with Sm evaporation from particle surface, resulting in the formation of α-Fe and Fe2Ti phases. The decomposition rate scales inversely with particle size. A significant stabilizing effect can be realized by substituting Fe with phase stabilizing elements such as V or Ga. According to ab initio calculations, Ti, V, and Ga lower the formation energies. However, when the reduction in magnetic moment is considered, the most effective stabilizing element that can minimize the reduction of μ0M is Ga. These findings present a useful insight on the potential solutions for the development of bulk Sm(Fe0·8Co0.2)12-based magnets. •The phase stability of SmFe12-based compounds are investigated.•Decomposition begins with Sm evaporation from particle surface and its rate scales inversely with particle size.•The most effective stabilizing element with minimum reduction of μ0Ms is Ga.</description><subject>Alloying elements</subject><subject>Decomposition</subject><subject>Density functional theory</subject><subject>Evaporation rate</subject><subject>First principles</subject><subject>Free energy</subject><subject>Gallium</subject><subject>Heat of formation</subject><subject>Magnetic moments</subject><subject>Magnets</subject><subject>Particle size</subject><subject>Permanent magnets</subject><subject>Phase stability</subject><subject>Reduction</subject><subject>SmFe11Ti</subject><subject>Thermal decomposition</subject><subject>ThMn12</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKxDAQDaLguvoJQsBza9KkaXsSWVwVVjy4nkOaTtyUtqlJV1i_3izdu8xhBua9N_MeQreUpJRQcd-mreo67fo0I7RKaZ5lGT9DC1oWLOFCVOdoQaosT0pWlpfoKoSWkIhkdIHMdge-Vx1uIAqMLtjJugE7g7e7t4FmyXQYAY87FQCrocF2CtiNk-33PQ6Tqm1nf-3whaGDHoa4tAP-6NcQmXXkNDh-5g7hGl0Y1QW4OfUl-lw_bVcvyeb9-XX1uEk0J2xKag6MF4oZwTSPg26EEIYYQ1ldCq3zqigFpRkzsTiplRZgCqp4qSiPntgS3c26o3ffewiTbN3eD_GkzBgVRcFpVUVUPqO0dyF4MHL0tlf-ICmRx0hlK0-RymOkco408h5mHkQLPxa8DNrCoKGxHvQkG2f_UfgDh8uB5w</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Dirba, I.</creator><creator>Harashima, Y.</creator><creator>Sepehri-Amin, H.</creator><creator>Ohkubo, T.</creator><creator>Miyake, T.</creator><creator>Hirosawa, S.</creator><creator>Hono, K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7856-7897</orcidid><orcidid>https://orcid.org/0000-0001-7367-0193</orcidid><orcidid>https://orcid.org/0000-0001-8511-2711</orcidid></search><sort><creationdate>20200115</creationdate><title>Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys</title><author>Dirba, I. ; Harashima, Y. ; Sepehri-Amin, H. ; Ohkubo, T. ; Miyake, T. ; Hirosawa, S. ; Hono, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b4e347a3f63c447acd666f0ff13b86cc597861123f3f340bac6ef71a48a140003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Decomposition</topic><topic>Density functional theory</topic><topic>Evaporation rate</topic><topic>First principles</topic><topic>Free energy</topic><topic>Gallium</topic><topic>Heat of formation</topic><topic>Magnetic moments</topic><topic>Magnets</topic><topic>Particle size</topic><topic>Permanent magnets</topic><topic>Phase stability</topic><topic>Reduction</topic><topic>SmFe11Ti</topic><topic>Thermal decomposition</topic><topic>ThMn12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirba, I.</creatorcontrib><creatorcontrib>Harashima, Y.</creatorcontrib><creatorcontrib>Sepehri-Amin, H.</creatorcontrib><creatorcontrib>Ohkubo, T.</creatorcontrib><creatorcontrib>Miyake, T.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Hono, K.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirba, I.</au><au>Harashima, Y.</au><au>Sepehri-Amin, H.</au><au>Ohkubo, T.</au><au>Miyake, T.</au><au>Hirosawa, S.</au><au>Hono, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>813</volume><spage>152224</spage><pages>152224-</pages><artnum>152224</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We investigated the phase stability of SmFe12-based compounds by experimental and computational first-principles approaches. The effect of particle size and alloy composition on the thermal decomposition rate is addressed. We show that decomposition begins with Sm evaporation from particle surface, resulting in the formation of α-Fe and Fe2Ti phases. The decomposition rate scales inversely with particle size. A significant stabilizing effect can be realized by substituting Fe with phase stabilizing elements such as V or Ga. According to ab initio calculations, Ti, V, and Ga lower the formation energies. However, when the reduction in magnetic moment is considered, the most effective stabilizing element that can minimize the reduction of μ0M is Ga. These findings present a useful insight on the potential solutions for the development of bulk Sm(Fe0·8Co0.2)12-based magnets. •The phase stability of SmFe12-based compounds are investigated.•Decomposition begins with Sm evaporation from particle surface and its rate scales inversely with particle size.•The most effective stabilizing element with minimum reduction of μ0Ms is Ga.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152224</doi><orcidid>https://orcid.org/0000-0002-7856-7897</orcidid><orcidid>https://orcid.org/0000-0001-7367-0193</orcidid><orcidid>https://orcid.org/0000-0001-8511-2711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-01, Vol.813, p.152224, Article 152224
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2316774199
source Elsevier ScienceDirect Journals Complete
subjects Alloying elements
Decomposition
Density functional theory
Evaporation rate
First principles
Free energy
Gallium
Heat of formation
Magnetic moments
Magnets
Particle size
Permanent magnets
Phase stability
Reduction
SmFe11Ti
Thermal decomposition
ThMn12
title Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20decomposition%20of%20ThMn12-type%20phase%20and%20its%20optimum%20stabilizing%20elements%20in%20SmFe12-based%20alloys&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Dirba,%20I.&rft.date=2020-01-15&rft.volume=813&rft.spage=152224&rft.pages=152224-&rft.artnum=152224&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152224&rft_dat=%3Cproquest_cross%3E2316774199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316774199&rft_id=info:pmid/&rft_els_id=S092583881933470X&rfr_iscdi=true