Pangea and the Lower Mantle
We show that the peripheral Pangea subduction zone closely followed a polar great circle. We relate it to the band of faster‐than‐average velocities in lowermost mantle. Both structures have an axis of symmetry in the equatorial plane. Assuming geologically long‐term stationarity of the deep mantle...
Gespeichert in:
Veröffentlicht in: | Tectonics (Washington, D.C.) D.C.), 2019-10, Vol.38 (10), p.3479-3504 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3504 |
---|---|
container_issue | 10 |
container_start_page | 3479 |
container_title | Tectonics (Washington, D.C.) |
container_volume | 38 |
creator | Le Pichon, Xavier Şengör, A. M. Celâl İmren, Caner |
description | We show that the peripheral Pangea subduction zone closely followed a polar great circle. We relate it to the band of faster‐than‐average velocities in lowermost mantle. Both structures have an axis of symmetry in the equatorial plane. Assuming geologically long‐term stationarity of the deep mantle structure, we propose to use the axis of symmetry of Pangea to define an absolute reference frame. This reference frame is close to the slab remnants and NNR frames of reference but disagrees with hot spot‐based frames. We apply this model to the last 400 Myr. We show that a hemispheric supercontinent appeared as early as 400 Ma. However, at 400 Ma, the axis of symmetry was situated quite far south and progressively migrated within the equatorial plane that it reached at 300 Ma. From 300 to 110–100 Ma, it maintained its position within the equatorial plane. We propose that the stationarity of Pangea within a single hemisphere surrounded by subduction zones led to thermal isolation of the underlying asthenosphere and consequent heating as well as a large accumulation of hot plume material. We discuss some important implications of our analysis concerning the proposition that the succession of supercontinents and dispersed continents is controlled by an alternation from a degree 1 to a degree 2 planform.
Key Points
During 200 Myr, between 300 and 110–100 Ma, Pangea occupied exactly a single hemisphere with an axis of symmetry in the equatorial plane
The stationarity of Pangea with respect to the lower mantle defines an absolute reference frame different from the hot spot frame
The stationarity led to thermal isolation and consequent heating as well as a large accumulation of hot plume material |
doi_str_mv | 10.1029/2018TC005445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316668459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316668459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3680-e5c2ec1b587d6f8d2201aa97dfeeacb60874fb6c87415df9337473db7335cfff3</originalsourceid><addsrcrecordid>eNp9zz1PwzAQBmALgUQobGwskVgJnL_tEUUtIAXBEGbLiW1oFZJip6r67wkKAxPLvcuju3sRusRwi4HoOwJY1SUAZ4wfoQxrxgo9zWOUAZGqkAzkKTpLaQOAGRciQ1evtn_3Nre9y8cPn1fD3sf82fZj58_RSbBd8he_uUBvq2VdPhbVy8NTeV8VlgoFhect8S1uuJJOBOXI9Ia1WrrgvW0bAUqy0Ih2Csxd0JRKJqlrJKW8DSHQBbqe927j8LXzaTSbYRf76aQhFAshFON6UjezauOQUvTBbOP608aDwWB-6pu_9SdOZ75fd_7wrzX1sqwJxgroN-u1WSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316668459</pqid></control><display><type>article</type><title>Pangea and the Lower Mantle</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Le Pichon, Xavier ; Şengör, A. M. Celâl ; İmren, Caner</creator><creatorcontrib>Le Pichon, Xavier ; Şengör, A. M. Celâl ; İmren, Caner</creatorcontrib><description>We show that the peripheral Pangea subduction zone closely followed a polar great circle. We relate it to the band of faster‐than‐average velocities in lowermost mantle. Both structures have an axis of symmetry in the equatorial plane. Assuming geologically long‐term stationarity of the deep mantle structure, we propose to use the axis of symmetry of Pangea to define an absolute reference frame. This reference frame is close to the slab remnants and NNR frames of reference but disagrees with hot spot‐based frames. We apply this model to the last 400 Myr. We show that a hemispheric supercontinent appeared as early as 400 Ma. However, at 400 Ma, the axis of symmetry was situated quite far south and progressively migrated within the equatorial plane that it reached at 300 Ma. From 300 to 110–100 Ma, it maintained its position within the equatorial plane. We propose that the stationarity of Pangea within a single hemisphere surrounded by subduction zones led to thermal isolation of the underlying asthenosphere and consequent heating as well as a large accumulation of hot plume material. We discuss some important implications of our analysis concerning the proposition that the succession of supercontinents and dispersed continents is controlled by an alternation from a degree 1 to a degree 2 planform.
Key Points
During 200 Myr, between 300 and 110–100 Ma, Pangea occupied exactly a single hemisphere with an axis of symmetry in the equatorial plane
The stationarity of Pangea with respect to the lower mantle defines an absolute reference frame different from the hot spot frame
The stationarity led to thermal isolation and consequent heating as well as a large accumulation of hot plume material</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1029/2018TC005445</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>absolute reference frame ; Asthenosphere ; Average velocity ; Heating ; Lower mantle ; Mantle ; Pangea ; Satellites ; Subduction ; Subduction zones ; Symmetry</subject><ispartof>Tectonics (Washington, D.C.), 2019-10, Vol.38 (10), p.3479-3504</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3680-e5c2ec1b587d6f8d2201aa97dfeeacb60874fb6c87415df9337473db7335cfff3</citedby><cites>FETCH-LOGICAL-a3680-e5c2ec1b587d6f8d2201aa97dfeeacb60874fb6c87415df9337473db7335cfff3</cites><orcidid>0000-0001-8767-8831 ; 0000-0002-6680-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018TC005445$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018TC005445$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Le Pichon, Xavier</creatorcontrib><creatorcontrib>Şengör, A. M. Celâl</creatorcontrib><creatorcontrib>İmren, Caner</creatorcontrib><title>Pangea and the Lower Mantle</title><title>Tectonics (Washington, D.C.)</title><description>We show that the peripheral Pangea subduction zone closely followed a polar great circle. We relate it to the band of faster‐than‐average velocities in lowermost mantle. Both structures have an axis of symmetry in the equatorial plane. Assuming geologically long‐term stationarity of the deep mantle structure, we propose to use the axis of symmetry of Pangea to define an absolute reference frame. This reference frame is close to the slab remnants and NNR frames of reference but disagrees with hot spot‐based frames. We apply this model to the last 400 Myr. We show that a hemispheric supercontinent appeared as early as 400 Ma. However, at 400 Ma, the axis of symmetry was situated quite far south and progressively migrated within the equatorial plane that it reached at 300 Ma. From 300 to 110–100 Ma, it maintained its position within the equatorial plane. We propose that the stationarity of Pangea within a single hemisphere surrounded by subduction zones led to thermal isolation of the underlying asthenosphere and consequent heating as well as a large accumulation of hot plume material. We discuss some important implications of our analysis concerning the proposition that the succession of supercontinents and dispersed continents is controlled by an alternation from a degree 1 to a degree 2 planform.
Key Points
During 200 Myr, between 300 and 110–100 Ma, Pangea occupied exactly a single hemisphere with an axis of symmetry in the equatorial plane
The stationarity of Pangea with respect to the lower mantle defines an absolute reference frame different from the hot spot frame
The stationarity led to thermal isolation and consequent heating as well as a large accumulation of hot plume material</description><subject>absolute reference frame</subject><subject>Asthenosphere</subject><subject>Average velocity</subject><subject>Heating</subject><subject>Lower mantle</subject><subject>Mantle</subject><subject>Pangea</subject><subject>Satellites</subject><subject>Subduction</subject><subject>Subduction zones</subject><subject>Symmetry</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9zz1PwzAQBmALgUQobGwskVgJnL_tEUUtIAXBEGbLiW1oFZJip6r67wkKAxPLvcuju3sRusRwi4HoOwJY1SUAZ4wfoQxrxgo9zWOUAZGqkAzkKTpLaQOAGRciQ1evtn_3Nre9y8cPn1fD3sf82fZj58_RSbBd8he_uUBvq2VdPhbVy8NTeV8VlgoFhect8S1uuJJOBOXI9Ia1WrrgvW0bAUqy0Ih2Csxd0JRKJqlrJKW8DSHQBbqe927j8LXzaTSbYRf76aQhFAshFON6UjezauOQUvTBbOP608aDwWB-6pu_9SdOZ75fd_7wrzX1sqwJxgroN-u1WSo</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Le Pichon, Xavier</creator><creator>Şengör, A. M. Celâl</creator><creator>İmren, Caner</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8767-8831</orcidid><orcidid>https://orcid.org/0000-0002-6680-7996</orcidid></search><sort><creationdate>201910</creationdate><title>Pangea and the Lower Mantle</title><author>Le Pichon, Xavier ; Şengör, A. M. Celâl ; İmren, Caner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3680-e5c2ec1b587d6f8d2201aa97dfeeacb60874fb6c87415df9337473db7335cfff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>absolute reference frame</topic><topic>Asthenosphere</topic><topic>Average velocity</topic><topic>Heating</topic><topic>Lower mantle</topic><topic>Mantle</topic><topic>Pangea</topic><topic>Satellites</topic><topic>Subduction</topic><topic>Subduction zones</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Pichon, Xavier</creatorcontrib><creatorcontrib>Şengör, A. M. Celâl</creatorcontrib><creatorcontrib>İmren, Caner</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Pichon, Xavier</au><au>Şengör, A. M. Celâl</au><au>İmren, Caner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pangea and the Lower Mantle</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>38</volume><issue>10</issue><spage>3479</spage><epage>3504</epage><pages>3479-3504</pages><issn>0278-7407</issn><eissn>1944-9194</eissn><abstract>We show that the peripheral Pangea subduction zone closely followed a polar great circle. We relate it to the band of faster‐than‐average velocities in lowermost mantle. Both structures have an axis of symmetry in the equatorial plane. Assuming geologically long‐term stationarity of the deep mantle structure, we propose to use the axis of symmetry of Pangea to define an absolute reference frame. This reference frame is close to the slab remnants and NNR frames of reference but disagrees with hot spot‐based frames. We apply this model to the last 400 Myr. We show that a hemispheric supercontinent appeared as early as 400 Ma. However, at 400 Ma, the axis of symmetry was situated quite far south and progressively migrated within the equatorial plane that it reached at 300 Ma. From 300 to 110–100 Ma, it maintained its position within the equatorial plane. We propose that the stationarity of Pangea within a single hemisphere surrounded by subduction zones led to thermal isolation of the underlying asthenosphere and consequent heating as well as a large accumulation of hot plume material. We discuss some important implications of our analysis concerning the proposition that the succession of supercontinents and dispersed continents is controlled by an alternation from a degree 1 to a degree 2 planform.
Key Points
During 200 Myr, between 300 and 110–100 Ma, Pangea occupied exactly a single hemisphere with an axis of symmetry in the equatorial plane
The stationarity of Pangea with respect to the lower mantle defines an absolute reference frame different from the hot spot frame
The stationarity led to thermal isolation and consequent heating as well as a large accumulation of hot plume material</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018TC005445</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8767-8831</orcidid><orcidid>https://orcid.org/0000-0002-6680-7996</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-7407 |
ispartof | Tectonics (Washington, D.C.), 2019-10, Vol.38 (10), p.3479-3504 |
issn | 0278-7407 1944-9194 |
language | eng |
recordid | cdi_proquest_journals_2316668459 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | absolute reference frame Asthenosphere Average velocity Heating Lower mantle Mantle Pangea Satellites Subduction Subduction zones Symmetry |
title | Pangea and the Lower Mantle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pangea%20and%20the%20Lower%20Mantle&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=Le%20Pichon,%20Xavier&rft.date=2019-10&rft.volume=38&rft.issue=10&rft.spage=3479&rft.epage=3504&rft.pages=3479-3504&rft.issn=0278-7407&rft.eissn=1944-9194&rft_id=info:doi/10.1029/2018TC005445&rft_dat=%3Cproquest_cross%3E2316668459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316668459&rft_id=info:pmid/&rfr_iscdi=true |