The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant

The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-11, Vol.60 (11)
1. Verfasser: Desiraju, Harini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Desiraju, Harini
description The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.
doi_str_mv 10.1063/1.5120357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316634244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316634244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFq7iSTSZel-FMoKFhxJUMmTXTKdFKTTKWufRmfwwfwlczQgntX93LOx72cg9ApkAEQTi9hkEFKaJbvoR4QMUxynol91CMkTZOUCXGIjrxfEAIgGOuh59mrxj-fiWkbFSrbYGtwiNKorO17FT6SB_3SOmzksqo3nelt3Xagx8Hie1k1tV5_f-HJBEuPJX6q5naJVfSDbMIxOjCy9vpkN_vo8fpqNr5Npnc3k_Fomiia5iERpaIGuC55mSqWCy5pqTNmBOclB07ADDPgFIDGSJDJTA0pJRBFCnkZ9z46295dOfvWah-KhW1dE18WKQXOKUsZi9T5llLOeu-0KVauWkq3KYAUXXsFFLv2InuxZb2qguwC_w9eW_cHFqu5ob_SxnxP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316634244</pqid></control><display><type>article</type><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Desiraju, Harini</creator><creatorcontrib>Desiraju, Harini</creatorcontrib><description>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5120357</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Determinants ; Kernels ; Operators (mathematics) ; Physics</subject><ispartof>Journal of mathematical physics, 2019-11, Vol.60 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</citedby><cites>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</cites><orcidid>0000-0003-1130-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5120357$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Desiraju, Harini</creatorcontrib><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><title>Journal of mathematical physics</title><description>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</description><subject>Determinants</subject><subject>Kernels</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFq7iSTSZel-FMoKFhxJUMmTXTKdFKTTKWufRmfwwfwlczQgntX93LOx72cg9ApkAEQTi9hkEFKaJbvoR4QMUxynol91CMkTZOUCXGIjrxfEAIgGOuh59mrxj-fiWkbFSrbYGtwiNKorO17FT6SB_3SOmzksqo3nelt3Xagx8Hie1k1tV5_f-HJBEuPJX6q5naJVfSDbMIxOjCy9vpkN_vo8fpqNr5Npnc3k_Fomiia5iERpaIGuC55mSqWCy5pqTNmBOclB07ADDPgFIDGSJDJTA0pJRBFCnkZ9z46295dOfvWah-KhW1dE18WKQXOKUsZi9T5llLOeu-0KVauWkq3KYAUXXsFFLv2InuxZb2qguwC_w9eW_cHFqu5ob_SxnxP</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Desiraju, Harini</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1130-0933</orcidid></search><sort><creationdate>20191101</creationdate><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><author>Desiraju, Harini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Determinants</topic><topic>Kernels</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desiraju, Harini</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desiraju, Harini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>60</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5120357</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1130-0933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-11, Vol.60 (11)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2316634244
source AIP Journals Complete; Alma/SFX Local Collection
subjects Determinants
Kernels
Operators (mathematics)
Physics
title The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CF%84-function%20of%20the%20Ablowitz-Segur%20family%20of%20solutions%20to%20Painlev%C3%A9%20II%20as%20a%20Widom%20constant&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Desiraju,%20Harini&rft.date=2019-11-01&rft.volume=60&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5120357&rft_dat=%3Cproquest_cross%3E2316634244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316634244&rft_id=info:pmid/&rfr_iscdi=true