The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant
The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-11, Vol.60 (11) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Desiraju, Harini |
description | The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function. |
doi_str_mv | 10.1063/1.5120357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316634244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316634244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFq7iSTSZel-FMoKFhxJUMmTXTKdFKTTKWufRmfwwfwlczQgntX93LOx72cg9ApkAEQTi9hkEFKaJbvoR4QMUxynol91CMkTZOUCXGIjrxfEAIgGOuh59mrxj-fiWkbFSrbYGtwiNKorO17FT6SB_3SOmzksqo3nelt3Xagx8Hie1k1tV5_f-HJBEuPJX6q5naJVfSDbMIxOjCy9vpkN_vo8fpqNr5Npnc3k_Fomiia5iERpaIGuC55mSqWCy5pqTNmBOclB07ADDPgFIDGSJDJTA0pJRBFCnkZ9z46295dOfvWah-KhW1dE18WKQXOKUsZi9T5llLOeu-0KVauWkq3KYAUXXsFFLv2InuxZb2qguwC_w9eW_cHFqu5ob_SxnxP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316634244</pqid></control><display><type>article</type><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Desiraju, Harini</creator><creatorcontrib>Desiraju, Harini</creatorcontrib><description>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5120357</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Determinants ; Kernels ; Operators (mathematics) ; Physics</subject><ispartof>Journal of mathematical physics, 2019-11, Vol.60 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</citedby><cites>FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</cites><orcidid>0000-0003-1130-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5120357$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Desiraju, Harini</creatorcontrib><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><title>Journal of mathematical physics</title><description>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</description><subject>Determinants</subject><subject>Kernels</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFq7iSTSZel-FMoKFhxJUMmTXTKdFKTTKWufRmfwwfwlczQgntX93LOx72cg9ApkAEQTi9hkEFKaJbvoR4QMUxynol91CMkTZOUCXGIjrxfEAIgGOuh59mrxj-fiWkbFSrbYGtwiNKorO17FT6SB_3SOmzksqo3nelt3Xagx8Hie1k1tV5_f-HJBEuPJX6q5naJVfSDbMIxOjCy9vpkN_vo8fpqNr5Npnc3k_Fomiia5iERpaIGuC55mSqWCy5pqTNmBOclB07ADDPgFIDGSJDJTA0pJRBFCnkZ9z46295dOfvWah-KhW1dE18WKQXOKUsZi9T5llLOeu-0KVauWkq3KYAUXXsFFLv2InuxZb2qguwC_w9eW_cHFqu5ob_SxnxP</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Desiraju, Harini</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1130-0933</orcidid></search><sort><creationdate>20191101</creationdate><title>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</title><author>Desiraju, Harini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8bc3f16eb6b2c4786a3be54f866b61601f9516311310815a5c93301951317b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Determinants</topic><topic>Kernels</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desiraju, Harini</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desiraju, Harini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>60</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The τ-functions of certain Painlevé equations (PVI, PV, and PIII) can be expressed as Fredholm determinants. Furthermore, the minor expansion of these determinants provides an interesting connection to random partitions. This paper is a step toward understanding whether the τ-function of Painlevé II has a Fredholm determinant representation. The Ablowitz-Segur family of solutions are special one parameter solutions of Painlevé II, and the corresponding τ-function is known to be the Fredholm determinant of the Airy kernel. We develop a formalism for open contour in parallel to the one formulated in terms of a suitable combination of Toeplitz operators called the Widom constant and verify that the Widom constant for the Ablowitz-Segur family of solutions is indeed the determinant of the Airy kernel. Finally, we construct a suitable basis and obtain the minor expansion of the Ablowitz-Segur τ-function.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5120357</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1130-0933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-11, Vol.60 (11) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2316634244 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Determinants Kernels Operators (mathematics) Physics |
title | The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CF%84-function%20of%20the%20Ablowitz-Segur%20family%20of%20solutions%20to%20Painlev%C3%A9%20II%20as%20a%20Widom%20constant&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Desiraju,%20Harini&rft.date=2019-11-01&rft.volume=60&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5120357&rft_dat=%3Cproquest_cross%3E2316634244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316634244&rft_id=info:pmid/&rfr_iscdi=true |