Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques

With macOS increasing popularity, the number, and variety of macOS malware are rising as well. Yet, very few tools exist for dynamic analysis of macOS malware. In this paper, we propose a macOS malware analysis framework called Mac-A-Mal. We develop a kernel extension to monitor malware behavior and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computer Virology and Hacking Techniques 2019-12, Vol.15 (4), p.249-257
Hauptverfasser: Pham, Duy-Phuc, Vu, Duc-Ly, Massacci, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 4
container_start_page 249
container_title Journal of Computer Virology and Hacking Techniques
container_volume 15
creator Pham, Duy-Phuc
Vu, Duc-Ly
Massacci, Fabio
description With macOS increasing popularity, the number, and variety of macOS malware are rising as well. Yet, very few tools exist for dynamic analysis of macOS malware. In this paper, we propose a macOS malware analysis framework called Mac-A-Mal. We develop a kernel extension to monitor malware behavior and mitigate several anti-evasion techniques used in the wild. Our framework exploits the macOS features of XPC service invocation that typically escape traditional mechanisms for detection of children processes. Performance benchmarks show that our system is comparable with professional tools and able to withstand VM detection. By using Mac-A-Mal, we discovered 71 unknown adware samples (8 of them using valid distribution certificates), 2 keyloggers, and 1 previously unseen trojan involved in the APT32 OceanLotus.
doi_str_mv 10.1007/s11416-019-00335-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316455304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316455304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7b63fff6d94f2b6dfb53a425dd153350c2eea5794463969af1ea433340cb7b2c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PttZ2GW1XxkloVCThbjmNDSpoUOyXq3-MSJDhx2Yd2ZnZ3EDpn9JJRml1FxgRThLKcUAogSX-ERpwrINMM4PhPfYomMa4ppYzLaabkCD0ujSUzsjT1Nd4Yu3pKse5NcNg0pt7HKmIfzMb1bXjHwaW-M02HuzbNuwq7TxOrtsGds29N9bFz8QydeFNHN_nJY_Rye_M8vyeL1d3DfLYgFhR0JCsUeO9VmQvPC1X6QoIRXJYlk-kFarlzRma5EApylRvPnBEAIKgtsoJbGKOLQXcb2sPeTq_bXUg3R82BKSElUJFQfEDZ0MYYnNfbUG1M2GtG9cE8PZink3n62zzdJxIMpJjAzasLv9L_sL4ACZJyFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316455304</pqid></control><display><type>article</type><title>Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pham, Duy-Phuc ; Vu, Duc-Ly ; Massacci, Fabio</creator><creatorcontrib>Pham, Duy-Phuc ; Vu, Duc-Ly ; Massacci, Fabio</creatorcontrib><description>With macOS increasing popularity, the number, and variety of macOS malware are rising as well. Yet, very few tools exist for dynamic analysis of macOS malware. In this paper, we propose a macOS malware analysis framework called Mac-A-Mal. We develop a kernel extension to monitor malware behavior and mitigate several anti-evasion techniques used in the wild. Our framework exploits the macOS features of XPC service invocation that typically escape traditional mechanisms for detection of children processes. Performance benchmarks show that our system is comparable with professional tools and able to withstand VM detection. By using Mac-A-Mal, we discovered 71 unknown adware samples (8 of them using valid distribution certificates), 2 keyloggers, and 1 previously unseen trojan involved in the APT32 OceanLotus.</description><identifier>ISSN: 2263-8733</identifier><identifier>EISSN: 2263-8733</identifier><identifier>DOI: 10.1007/s11416-019-00335-w</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Computer Science ; Malware ; Original Paper</subject><ispartof>Journal of Computer Virology and Hacking Techniques, 2019-12, Vol.15 (4), p.249-257</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7b63fff6d94f2b6dfb53a425dd153350c2eea5794463969af1ea433340cb7b2c3</citedby><cites>FETCH-LOGICAL-c363t-7b63fff6d94f2b6dfb53a425dd153350c2eea5794463969af1ea433340cb7b2c3</cites><orcidid>0000-0003-3149-0957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11416-019-00335-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11416-019-00335-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pham, Duy-Phuc</creatorcontrib><creatorcontrib>Vu, Duc-Ly</creatorcontrib><creatorcontrib>Massacci, Fabio</creatorcontrib><title>Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques</title><title>Journal of Computer Virology and Hacking Techniques</title><addtitle>J Comput Virol Hack Tech</addtitle><description>With macOS increasing popularity, the number, and variety of macOS malware are rising as well. Yet, very few tools exist for dynamic analysis of macOS malware. In this paper, we propose a macOS malware analysis framework called Mac-A-Mal. We develop a kernel extension to monitor malware behavior and mitigate several anti-evasion techniques used in the wild. Our framework exploits the macOS features of XPC service invocation that typically escape traditional mechanisms for detection of children processes. Performance benchmarks show that our system is comparable with professional tools and able to withstand VM detection. By using Mac-A-Mal, we discovered 71 unknown adware samples (8 of them using valid distribution certificates), 2 keyloggers, and 1 previously unseen trojan involved in the APT32 OceanLotus.</description><subject>Computer Science</subject><subject>Malware</subject><subject>Original Paper</subject><issn>2263-8733</issn><issn>2263-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PttZ2GW1XxkloVCThbjmNDSpoUOyXq3-MSJDhx2Yd2ZnZ3EDpn9JJRml1FxgRThLKcUAogSX-ERpwrINMM4PhPfYomMa4ppYzLaabkCD0ujSUzsjT1Nd4Yu3pKse5NcNg0pt7HKmIfzMb1bXjHwaW-M02HuzbNuwq7TxOrtsGds29N9bFz8QydeFNHN_nJY_Rye_M8vyeL1d3DfLYgFhR0JCsUeO9VmQvPC1X6QoIRXJYlk-kFarlzRma5EApylRvPnBEAIKgtsoJbGKOLQXcb2sPeTq_bXUg3R82BKSElUJFQfEDZ0MYYnNfbUG1M2GtG9cE8PZink3n62zzdJxIMpJjAzasLv9L_sL4ACZJyFw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pham, Duy-Phuc</creator><creator>Vu, Duc-Ly</creator><creator>Massacci, Fabio</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3149-0957</orcidid></search><sort><creationdate>20191201</creationdate><title>Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques</title><author>Pham, Duy-Phuc ; Vu, Duc-Ly ; Massacci, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7b63fff6d94f2b6dfb53a425dd153350c2eea5794463969af1ea433340cb7b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Malware</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Duy-Phuc</creatorcontrib><creatorcontrib>Vu, Duc-Ly</creatorcontrib><creatorcontrib>Massacci, Fabio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Duy-Phuc</au><au>Vu, Duc-Ly</au><au>Massacci, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques</atitle><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle><stitle>J Comput Virol Hack Tech</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>2263-8733</issn><eissn>2263-8733</eissn><abstract>With macOS increasing popularity, the number, and variety of macOS malware are rising as well. Yet, very few tools exist for dynamic analysis of macOS malware. In this paper, we propose a macOS malware analysis framework called Mac-A-Mal. We develop a kernel extension to monitor malware behavior and mitigate several anti-evasion techniques used in the wild. Our framework exploits the macOS features of XPC service invocation that typically escape traditional mechanisms for detection of children processes. Performance benchmarks show that our system is comparable with professional tools and able to withstand VM detection. By using Mac-A-Mal, we discovered 71 unknown adware samples (8 of them using valid distribution certificates), 2 keyloggers, and 1 previously unseen trojan involved in the APT32 OceanLotus.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s11416-019-00335-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3149-0957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2263-8733
ispartof Journal of Computer Virology and Hacking Techniques, 2019-12, Vol.15 (4), p.249-257
issn 2263-8733
2263-8733
language eng
recordid cdi_proquest_journals_2316455304
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Computer Science
Malware
Original Paper
title Mac-A-Mal: macOS malware analysis framework resistant to anti evasion techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mac-A-Mal:%20macOS%20malware%20analysis%20framework%20resistant%20to%20anti%20evasion%20techniques&rft.jtitle=Journal%20of%20Computer%20Virology%20and%20Hacking%20Techniques&rft.au=Pham,%20Duy-Phuc&rft.date=2019-12-01&rft.volume=15&rft.issue=4&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=2263-8733&rft.eissn=2263-8733&rft_id=info:doi/10.1007/s11416-019-00335-w&rft_dat=%3Cproquest_cross%3E2316455304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316455304&rft_id=info:pmid/&rfr_iscdi=true