Simple Explanation of the Classical Limit
The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenb...
Gespeichert in:
Veröffentlicht in: | Foundations of physics 2019-12, Vol.49 (12), p.1365-1371 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 12 |
container_start_page | 1365 |
container_title | Foundations of physics |
container_volume | 49 |
creator | Hnilo, Alejandro A. |
description | The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number
q
of qubits are shown to become indistinguishable from the ones of a classical model as
q
increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale. |
doi_str_mv | 10.1007/s10701-019-00310-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316455133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316455133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuCKxfRe5OmaZZSxgcMuFDXIRMT7dCXSQfqvzdawZ1w4Wy-cy58hJwjXCGAvI4IEpACKgrAEeh8QDIUklElsDwkGQAKqgCrY3IS4w4AlCyLjFw-Nd3Yunw9j63pzdQMfT74fHp3ed2aGBtr2nzTdM10So68aaM7-80VebldP9f3dPN491DfbKjlqCbqi2pb-YKlA88sE7IyTtjKyrK0okIPTBSvnMmtM4ob66SVFr0tnELOjeQrcrHsjmH42Ls46d2wD316qRnHshAicYliC2XDEGNwXo-h6Uz41Aj6W4lelOikRP8o0XMq8aUUE9y_ufA3_U_rC5PFYsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316455133</pqid></control><display><type>article</type><title>Simple Explanation of the Classical Limit</title><source>SpringerNature Journals</source><creator>Hnilo, Alejandro A.</creator><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><description>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number
q
of qubits are shown to become indistinguishable from the ones of a classical model as
q
increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-019-00310-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Entangled states ; History and Philosophical Foundations of Physics ; Numbers ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing) ; Relativity Theory ; Statistical Physics and Dynamical Systems</subject><ispartof>Foundations of physics, 2019-12, Vol.49 (12), p.1365-1371</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</citedby><cites>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</cites><orcidid>0000-0003-1725-5758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10701-019-00310-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10701-019-00310-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><title>Simple Explanation of the Classical Limit</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number
q
of qubits are shown to become indistinguishable from the ones of a classical model as
q
increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Entangled states</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Numbers</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Relativity Theory</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuCKxfRe5OmaZZSxgcMuFDXIRMT7dCXSQfqvzdawZ1w4Wy-cy58hJwjXCGAvI4IEpACKgrAEeh8QDIUklElsDwkGQAKqgCrY3IS4w4AlCyLjFw-Nd3Yunw9j63pzdQMfT74fHp3ed2aGBtr2nzTdM10So68aaM7-80VebldP9f3dPN491DfbKjlqCbqi2pb-YKlA88sE7IyTtjKyrK0okIPTBSvnMmtM4ob66SVFr0tnELOjeQrcrHsjmH42Ls46d2wD316qRnHshAicYliC2XDEGNwXo-h6Uz41Aj6W4lelOikRP8o0XMq8aUUE9y_ufA3_U_rC5PFYsQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hnilo, Alejandro A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1725-5758</orcidid></search><sort><creationdate>20191201</creationdate><title>Simple Explanation of the Classical Limit</title><author>Hnilo, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Entangled states</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Numbers</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Relativity Theory</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hnilo, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Explanation of the Classical Limit</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>49</volume><issue>12</issue><spage>1365</spage><epage>1371</epage><pages>1365-1371</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number
q
of qubits are shown to become indistinguishable from the ones of a classical model as
q
increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-019-00310-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1725-5758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 2019-12, Vol.49 (12), p.1365-1371 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_proquest_journals_2316455133 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation Classical Mechanics Entangled states History and Philosophical Foundations of Physics Numbers Philosophy of Science Physics Physics and Astronomy Quantum mechanics Quantum phenomena Quantum Physics Qubits (quantum computing) Relativity Theory Statistical Physics and Dynamical Systems |
title | Simple Explanation of the Classical Limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Explanation%20of%20the%20Classical%20Limit&rft.jtitle=Foundations%20of%20physics&rft.au=Hnilo,%20Alejandro%20A.&rft.date=2019-12-01&rft.volume=49&rft.issue=12&rft.spage=1365&rft.epage=1371&rft.pages=1365-1371&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-019-00310-x&rft_dat=%3Cproquest_cross%3E2316455133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316455133&rft_id=info:pmid/&rfr_iscdi=true |