Simple Explanation of the Classical Limit

The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of physics 2019-12, Vol.49 (12), p.1365-1371
1. Verfasser: Hnilo, Alejandro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1371
container_issue 12
container_start_page 1365
container_title Foundations of physics
container_volume 49
creator Hnilo, Alejandro A.
description The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.
doi_str_mv 10.1007/s10701-019-00310-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316455133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316455133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuCKxfRe5OmaZZSxgcMuFDXIRMT7dCXSQfqvzdawZ1w4Wy-cy58hJwjXCGAvI4IEpACKgrAEeh8QDIUklElsDwkGQAKqgCrY3IS4w4AlCyLjFw-Nd3Yunw9j63pzdQMfT74fHp3ed2aGBtr2nzTdM10So68aaM7-80VebldP9f3dPN491DfbKjlqCbqi2pb-YKlA88sE7IyTtjKyrK0okIPTBSvnMmtM4ob66SVFr0tnELOjeQrcrHsjmH42Ls46d2wD316qRnHshAicYliC2XDEGNwXo-h6Uz41Aj6W4lelOikRP8o0XMq8aUUE9y_ufA3_U_rC5PFYsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316455133</pqid></control><display><type>article</type><title>Simple Explanation of the Classical Limit</title><source>SpringerNature Journals</source><creator>Hnilo, Alejandro A.</creator><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><description>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-019-00310-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Entangled states ; History and Philosophical Foundations of Physics ; Numbers ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum phenomena ; Quantum Physics ; Qubits (quantum computing) ; Relativity Theory ; Statistical Physics and Dynamical Systems</subject><ispartof>Foundations of physics, 2019-12, Vol.49 (12), p.1365-1371</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</citedby><cites>FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</cites><orcidid>0000-0003-1725-5758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10701-019-00310-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10701-019-00310-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><title>Simple Explanation of the Classical Limit</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Entangled states</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Numbers</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Relativity Theory</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuCKxfRe5OmaZZSxgcMuFDXIRMT7dCXSQfqvzdawZ1w4Wy-cy58hJwjXCGAvI4IEpACKgrAEeh8QDIUklElsDwkGQAKqgCrY3IS4w4AlCyLjFw-Nd3Yunw9j63pzdQMfT74fHp3ed2aGBtr2nzTdM10So68aaM7-80VebldP9f3dPN491DfbKjlqCbqi2pb-YKlA88sE7IyTtjKyrK0okIPTBSvnMmtM4ob66SVFr0tnELOjeQrcrHsjmH42Ls46d2wD316qRnHshAicYliC2XDEGNwXo-h6Uz41Aj6W4lelOikRP8o0XMq8aUUE9y_ufA3_U_rC5PFYsQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hnilo, Alejandro A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1725-5758</orcidid></search><sort><creationdate>20191201</creationdate><title>Simple Explanation of the Classical Limit</title><author>Hnilo, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f48b8f42f420f2c2578ae5c8c766c581f0254d327bea93ace7c7c1fc4e9133a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Entangled states</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Numbers</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Relativity Theory</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hnilo, Alejandro A.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hnilo, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Explanation of the Classical Limit</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>49</volume><issue>12</issue><spage>1365</spage><epage>1371</epage><pages>1365-1371</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-019-00310-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1725-5758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 2019-12, Vol.49 (12), p.1365-1371
issn 0015-9018
1572-9516
language eng
recordid cdi_proquest_journals_2316455133
source SpringerNature Journals
subjects Classical and Quantum Gravitation
Classical Mechanics
Entangled states
History and Philosophical Foundations of Physics
Numbers
Philosophy of Science
Physics
Physics and Astronomy
Quantum mechanics
Quantum phenomena
Quantum Physics
Qubits (quantum computing)
Relativity Theory
Statistical Physics and Dynamical Systems
title Simple Explanation of the Classical Limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Explanation%20of%20the%20Classical%20Limit&rft.jtitle=Foundations%20of%20physics&rft.au=Hnilo,%20Alejandro%20A.&rft.date=2019-12-01&rft.volume=49&rft.issue=12&rft.spage=1365&rft.epage=1371&rft.pages=1365-1371&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-019-00310-x&rft_dat=%3Cproquest_cross%3E2316455133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316455133&rft_id=info:pmid/&rfr_iscdi=true