Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures

Vertical stacking of ultrathin two-dimensional materials via weak van der Waals (vdW) interactions is identified as an important technique for tuning the physical properties and designing viable products for nanoelectronics, spintronics, and renewable energy source applications. The geometry, electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-10, Vol.100 (16)
Hauptverfasser: Din, H U, Idrees, M, Albar, Arwa, Shafiq, M, Ahmad, Iftikhar, Nguyen, Chuong V, Amin, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Physical review. B
container_volume 100
creator Din, H U
Idrees, M
Albar, Arwa
Shafiq, M
Ahmad, Iftikhar
Nguyen, Chuong V
Amin, Bin
description Vertical stacking of ultrathin two-dimensional materials via weak van der Waals (vdW) interactions is identified as an important technique for tuning the physical properties and designing viable products for nanoelectronics, spintronics, and renewable energy source applications. The geometry, electronic, and photocatalytic properties of vdW heterostructures of GeC and Janus transition metal dichalcogenides MSSe (M = Mo, W) monolayers are investigated by performing first-principles calculations. Two different possible models of GeC-MSSe heterostructures are presented with an alternative order of chalcogen atoms at opposite surfaces in MSSe. The most favorable stacking pattern of both models is dynamically and energetically feasible. A direct type-II band alignment is obtained in both models of understudy heterobilayer systems. The spin orbit coupling (SOC) effect causes considerable Rashba spin splitting in both MSSe monolayers. In particular, a greater Rashba spin polarization is demonstrated in model 1 (GeC-WSSe) than model 2 (GeC-MoSSe) caused by the alternative order of chalcogen atoms and larger SOC effect of heavier W than Mo atoms, which provides a platform for experimental and theoretical understanding of designing two-dimensional spintronic devices. More interestingly, the appropriate band alignments of model 1 with the standard water redox potentials enable its capability to dissociate water into H+/H2 and O2/H2O. In contrast to model 1, model 2 can only oxidize water into O2/H2O. The simulated design of GeC-MSSe is predicted for promising use in future electronic, spintronics, and photocatalytic water splitting.
doi_str_mv 10.1103/PhysRevB.100.165425
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2316414874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316414874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-156b37d29c4b6484f590b157575407cd109e2162a46ca52535289258576f71433</originalsourceid><addsrcrecordid>eNo9TstKw0AAXETBUvsFXha8KJi6780ePGipVWhRWqXHstlsTELIxt1NoX_g2U_0SwwoMjAzzGFmADjHaIoxojcv5SGs7f5-itGQCM4IPwIjwoRKlBLq-N9zdAomIdQIISyQkkiNQL3Wocw0DF3VDtRUMVbtO9RtDrvSRWd01M0hVgZ23nXWx8oG6Aq4sLPvz6_VZmPh5ep25a7h9grudQtz6-FW6ybA0kbrXYi-N7H3NpyBk2LI7eRPx-DtYf46e0yWz4un2d0yMYTSmGAuMipzogzLBEtZwRXKMJcDGJImx0hZggXRTBjNCaecpIrwlEtRSMwoHYOL397h8UdvQ9zVrvftMLkjFAuGWSoZ_QF6eVtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316414874</pqid></control><display><type>article</type><title>Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures</title><source>American Physical Society Journals</source><creator>Din, H U ; Idrees, M ; Albar, Arwa ; Shafiq, M ; Ahmad, Iftikhar ; Nguyen, Chuong V ; Amin, Bin</creator><creatorcontrib>Din, H U ; Idrees, M ; Albar, Arwa ; Shafiq, M ; Ahmad, Iftikhar ; Nguyen, Chuong V ; Amin, Bin</creatorcontrib><description>Vertical stacking of ultrathin two-dimensional materials via weak van der Waals (vdW) interactions is identified as an important technique for tuning the physical properties and designing viable products for nanoelectronics, spintronics, and renewable energy source applications. The geometry, electronic, and photocatalytic properties of vdW heterostructures of GeC and Janus transition metal dichalcogenides MSSe (M = Mo, W) monolayers are investigated by performing first-principles calculations. Two different possible models of GeC-MSSe heterostructures are presented with an alternative order of chalcogen atoms at opposite surfaces in MSSe. The most favorable stacking pattern of both models is dynamically and energetically feasible. A direct type-II band alignment is obtained in both models of understudy heterobilayer systems. The spin orbit coupling (SOC) effect causes considerable Rashba spin splitting in both MSSe monolayers. In particular, a greater Rashba spin polarization is demonstrated in model 1 (GeC-WSSe) than model 2 (GeC-MoSSe) caused by the alternative order of chalcogen atoms and larger SOC effect of heavier W than Mo atoms, which provides a platform for experimental and theoretical understanding of designing two-dimensional spintronic devices. More interestingly, the appropriate band alignments of model 1 with the standard water redox potentials enable its capability to dissociate water into H+/H2 and O2/H2O. In contrast to model 1, model 2 can only oxidize water into O2/H2O. The simulated design of GeC-MSSe is predicted for promising use in future electronic, spintronics, and photocatalytic water splitting.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.165425</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computer simulation ; First principles ; Heterostructures ; Monolayers ; Nanoelectronics ; Photocatalysis ; Physical properties ; Polarization (spin alignment) ; Spintronics ; Stacking ; Transition metal compounds ; Two dimensional materials ; Two dimensional models ; Water splitting</subject><ispartof>Physical review. B, 2019-10, Vol.100 (16)</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c233t-156b37d29c4b6484f590b157575407cd109e2162a46ca52535289258576f71433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Din, H U</creatorcontrib><creatorcontrib>Idrees, M</creatorcontrib><creatorcontrib>Albar, Arwa</creatorcontrib><creatorcontrib>Shafiq, M</creatorcontrib><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Nguyen, Chuong V</creatorcontrib><creatorcontrib>Amin, Bin</creatorcontrib><title>Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures</title><title>Physical review. B</title><description>Vertical stacking of ultrathin two-dimensional materials via weak van der Waals (vdW) interactions is identified as an important technique for tuning the physical properties and designing viable products for nanoelectronics, spintronics, and renewable energy source applications. The geometry, electronic, and photocatalytic properties of vdW heterostructures of GeC and Janus transition metal dichalcogenides MSSe (M = Mo, W) monolayers are investigated by performing first-principles calculations. Two different possible models of GeC-MSSe heterostructures are presented with an alternative order of chalcogen atoms at opposite surfaces in MSSe. The most favorable stacking pattern of both models is dynamically and energetically feasible. A direct type-II band alignment is obtained in both models of understudy heterobilayer systems. The spin orbit coupling (SOC) effect causes considerable Rashba spin splitting in both MSSe monolayers. In particular, a greater Rashba spin polarization is demonstrated in model 1 (GeC-WSSe) than model 2 (GeC-MoSSe) caused by the alternative order of chalcogen atoms and larger SOC effect of heavier W than Mo atoms, which provides a platform for experimental and theoretical understanding of designing two-dimensional spintronic devices. More interestingly, the appropriate band alignments of model 1 with the standard water redox potentials enable its capability to dissociate water into H+/H2 and O2/H2O. In contrast to model 1, model 2 can only oxidize water into O2/H2O. The simulated design of GeC-MSSe is predicted for promising use in future electronic, spintronics, and photocatalytic water splitting.</description><subject>Computer simulation</subject><subject>First principles</subject><subject>Heterostructures</subject><subject>Monolayers</subject><subject>Nanoelectronics</subject><subject>Photocatalysis</subject><subject>Physical properties</subject><subject>Polarization (spin alignment)</subject><subject>Spintronics</subject><subject>Stacking</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><subject>Two dimensional models</subject><subject>Water splitting</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9TstKw0AAXETBUvsFXha8KJi6780ePGipVWhRWqXHstlsTELIxt1NoX_g2U_0SwwoMjAzzGFmADjHaIoxojcv5SGs7f5-itGQCM4IPwIjwoRKlBLq-N9zdAomIdQIISyQkkiNQL3Wocw0DF3VDtRUMVbtO9RtDrvSRWd01M0hVgZ23nXWx8oG6Aq4sLPvz6_VZmPh5ep25a7h9grudQtz6-FW6ybA0kbrXYi-N7H3NpyBk2LI7eRPx-DtYf46e0yWz4un2d0yMYTSmGAuMipzogzLBEtZwRXKMJcDGJImx0hZggXRTBjNCaecpIrwlEtRSMwoHYOL397h8UdvQ9zVrvftMLkjFAuGWSoZ_QF6eVtg</recordid><startdate>20191028</startdate><enddate>20191028</enddate><creator>Din, H U</creator><creator>Idrees, M</creator><creator>Albar, Arwa</creator><creator>Shafiq, M</creator><creator>Ahmad, Iftikhar</creator><creator>Nguyen, Chuong V</creator><creator>Amin, Bin</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191028</creationdate><title>Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures</title><author>Din, H U ; Idrees, M ; Albar, Arwa ; Shafiq, M ; Ahmad, Iftikhar ; Nguyen, Chuong V ; Amin, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-156b37d29c4b6484f590b157575407cd109e2162a46ca52535289258576f71433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>First principles</topic><topic>Heterostructures</topic><topic>Monolayers</topic><topic>Nanoelectronics</topic><topic>Photocatalysis</topic><topic>Physical properties</topic><topic>Polarization (spin alignment)</topic><topic>Spintronics</topic><topic>Stacking</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><topic>Two dimensional models</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Din, H U</creatorcontrib><creatorcontrib>Idrees, M</creatorcontrib><creatorcontrib>Albar, Arwa</creatorcontrib><creatorcontrib>Shafiq, M</creatorcontrib><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Nguyen, Chuong V</creatorcontrib><creatorcontrib>Amin, Bin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Din, H U</au><au>Idrees, M</au><au>Albar, Arwa</au><au>Shafiq, M</au><au>Ahmad, Iftikhar</au><au>Nguyen, Chuong V</au><au>Amin, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures</atitle><jtitle>Physical review. B</jtitle><date>2019-10-28</date><risdate>2019</risdate><volume>100</volume><issue>16</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Vertical stacking of ultrathin two-dimensional materials via weak van der Waals (vdW) interactions is identified as an important technique for tuning the physical properties and designing viable products for nanoelectronics, spintronics, and renewable energy source applications. The geometry, electronic, and photocatalytic properties of vdW heterostructures of GeC and Janus transition metal dichalcogenides MSSe (M = Mo, W) monolayers are investigated by performing first-principles calculations. Two different possible models of GeC-MSSe heterostructures are presented with an alternative order of chalcogen atoms at opposite surfaces in MSSe. The most favorable stacking pattern of both models is dynamically and energetically feasible. A direct type-II band alignment is obtained in both models of understudy heterobilayer systems. The spin orbit coupling (SOC) effect causes considerable Rashba spin splitting in both MSSe monolayers. In particular, a greater Rashba spin polarization is demonstrated in model 1 (GeC-WSSe) than model 2 (GeC-MoSSe) caused by the alternative order of chalcogen atoms and larger SOC effect of heavier W than Mo atoms, which provides a platform for experimental and theoretical understanding of designing two-dimensional spintronic devices. More interestingly, the appropriate band alignments of model 1 with the standard water redox potentials enable its capability to dissociate water into H+/H2 and O2/H2O. In contrast to model 1, model 2 can only oxidize water into O2/H2O. The simulated design of GeC-MSSe is predicted for promising use in future electronic, spintronics, and photocatalytic water splitting.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.165425</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-10, Vol.100 (16)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2316414874
source American Physical Society Journals
subjects Computer simulation
First principles
Heterostructures
Monolayers
Nanoelectronics
Photocatalysis
Physical properties
Polarization (spin alignment)
Spintronics
Stacking
Transition metal compounds
Two dimensional materials
Two dimensional models
Water splitting
title Rashba spin splitting and photocatalytic properties of GeC−MSSe (M=Mo, W) van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rashba%20spin%20splitting%20and%20photocatalytic%20properties%20of%20GeC%E2%88%92MSSe%20(M=Mo,%20W)%20van%20der%20Waals%20heterostructures&rft.jtitle=Physical%20review.%20B&rft.au=Din,%20H%20U&rft.date=2019-10-28&rft.volume=100&rft.issue=16&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.165425&rft_dat=%3Cproquest%3E2316414874%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316414874&rft_id=info:pmid/&rfr_iscdi=true