Rindler horizons in a Schwarzschild spacetime

We investigate the past and future Rindler horizons for radial Rindler trajectories in a Schwarzschild spacetime. We assume the Rindler trajectory to be linearly uniformly accelerated (LUA) throughout its motion, in the sense of the curved spacetime generalization of the Letaw-Frenet equations. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-10, Vol.100 (8), Article 084029
Hauptverfasser: Paithankar, Kajol, Kolekar, Sanved
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 100
creator Paithankar, Kajol
Kolekar, Sanved
description We investigate the past and future Rindler horizons for radial Rindler trajectories in a Schwarzschild spacetime. We assume the Rindler trajectory to be linearly uniformly accelerated (LUA) throughout its motion, in the sense of the curved spacetime generalization of the Letaw-Frenet equations. The analytical solution for the radial LUA trajectories along with its past and future intercepts C with the past null infinity J− and future null infinity J+ are presented. The Rindler horizons in the presence of the black hole are found to depend on both the magnitude of acceleration |a| and the asymptotic initial data h, unlike in the flat Rindler spacetime case, wherein they are only a function of the global translational shift h. The horizon features are discussed. The Rindler quadrant structure provides an alternate perspective to interpret the acceleration bounds |a|≤|a|b found earlier [K. Paithankar and S. Kolekar, Phys. Rev. D 99, 064012 (2019)].
doi_str_mv 10.1103/PhysRevD.100.084029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316411692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316411692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-926e3b834bbcb969176c449db971125c165639c801aea7422dddd368b448c5523</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcFr1vPSdKkuZT5MWGgTL0OaZrRjq6tSadsv96WqufmPBxezgsPIdcICSKw29fyGDbu6z5BgAQyDlSdkRnlEmIY-PyfES7JIoQdDChAScQZiTdVU9TOR2Xrq1PbhKhqIhO92fLb-FOwZVUXUeiMdX21d1fkYmvq4Ba_e04-Hh_el6t4_fL0vLxbx5ZK2ceKCsfyjPE8t7kSCqWwnKsiHztpalGkgimbARpnJKe0GIaJLOc8s2lK2ZzcTH87334eXOj1rj34ZqjUlKHgiEKNKTalrG9D8G6rO1_tjT9qBD2q0X9qhgPoSQ37AWvsVpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316411692</pqid></control><display><type>article</type><title>Rindler horizons in a Schwarzschild spacetime</title><source>American Physical Society Journals</source><creator>Paithankar, Kajol ; Kolekar, Sanved</creator><creatorcontrib>Paithankar, Kajol ; Kolekar, Sanved</creatorcontrib><description>We investigate the past and future Rindler horizons for radial Rindler trajectories in a Schwarzschild spacetime. We assume the Rindler trajectory to be linearly uniformly accelerated (LUA) throughout its motion, in the sense of the curved spacetime generalization of the Letaw-Frenet equations. The analytical solution for the radial LUA trajectories along with its past and future intercepts C with the past null infinity J− and future null infinity J+ are presented. The Rindler horizons in the presence of the black hole are found to depend on both the magnitude of acceleration |a| and the asymptotic initial data h, unlike in the flat Rindler spacetime case, wherein they are only a function of the global translational shift h. The horizon features are discussed. The Rindler quadrant structure provides an alternate perspective to interpret the acceleration bounds |a|≤|a|b found earlier [K. Paithankar and S. Kolekar, Phys. Rev. D 99, 064012 (2019)].</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.084029</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Acceleration ; Exact solutions ; Infinity ; Spacetime ; Trajectories</subject><ispartof>Physical review. D, 2019-10, Vol.100 (8), Article 084029</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-926e3b834bbcb969176c449db971125c165639c801aea7422dddd368b448c5523</citedby><cites>FETCH-LOGICAL-c277t-926e3b834bbcb969176c449db971125c165639c801aea7422dddd368b448c5523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Paithankar, Kajol</creatorcontrib><creatorcontrib>Kolekar, Sanved</creatorcontrib><title>Rindler horizons in a Schwarzschild spacetime</title><title>Physical review. D</title><description>We investigate the past and future Rindler horizons for radial Rindler trajectories in a Schwarzschild spacetime. We assume the Rindler trajectory to be linearly uniformly accelerated (LUA) throughout its motion, in the sense of the curved spacetime generalization of the Letaw-Frenet equations. The analytical solution for the radial LUA trajectories along with its past and future intercepts C with the past null infinity J− and future null infinity J+ are presented. The Rindler horizons in the presence of the black hole are found to depend on both the magnitude of acceleration |a| and the asymptotic initial data h, unlike in the flat Rindler spacetime case, wherein they are only a function of the global translational shift h. The horizon features are discussed. The Rindler quadrant structure provides an alternate perspective to interpret the acceleration bounds |a|≤|a|b found earlier [K. Paithankar and S. Kolekar, Phys. Rev. D 99, 064012 (2019)].</description><subject>Acceleration</subject><subject>Exact solutions</subject><subject>Infinity</subject><subject>Spacetime</subject><subject>Trajectories</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcFr1vPSdKkuZT5MWGgTL0OaZrRjq6tSadsv96WqufmPBxezgsPIdcICSKw29fyGDbu6z5BgAQyDlSdkRnlEmIY-PyfES7JIoQdDChAScQZiTdVU9TOR2Xrq1PbhKhqIhO92fLb-FOwZVUXUeiMdX21d1fkYmvq4Ba_e04-Hh_el6t4_fL0vLxbx5ZK2ceKCsfyjPE8t7kSCqWwnKsiHztpalGkgimbARpnJKe0GIaJLOc8s2lK2ZzcTH87334eXOj1rj34ZqjUlKHgiEKNKTalrG9D8G6rO1_tjT9qBD2q0X9qhgPoSQ37AWvsVpY</recordid><startdate>20191014</startdate><enddate>20191014</enddate><creator>Paithankar, Kajol</creator><creator>Kolekar, Sanved</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191014</creationdate><title>Rindler horizons in a Schwarzschild spacetime</title><author>Paithankar, Kajol ; Kolekar, Sanved</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-926e3b834bbcb969176c449db971125c165639c801aea7422dddd368b448c5523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Exact solutions</topic><topic>Infinity</topic><topic>Spacetime</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paithankar, Kajol</creatorcontrib><creatorcontrib>Kolekar, Sanved</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paithankar, Kajol</au><au>Kolekar, Sanved</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rindler horizons in a Schwarzschild spacetime</atitle><jtitle>Physical review. D</jtitle><date>2019-10-14</date><risdate>2019</risdate><volume>100</volume><issue>8</issue><artnum>084029</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the past and future Rindler horizons for radial Rindler trajectories in a Schwarzschild spacetime. We assume the Rindler trajectory to be linearly uniformly accelerated (LUA) throughout its motion, in the sense of the curved spacetime generalization of the Letaw-Frenet equations. The analytical solution for the radial LUA trajectories along with its past and future intercepts C with the past null infinity J− and future null infinity J+ are presented. The Rindler horizons in the presence of the black hole are found to depend on both the magnitude of acceleration |a| and the asymptotic initial data h, unlike in the flat Rindler spacetime case, wherein they are only a function of the global translational shift h. The horizon features are discussed. The Rindler quadrant structure provides an alternate perspective to interpret the acceleration bounds |a|≤|a|b found earlier [K. Paithankar and S. Kolekar, Phys. Rev. D 99, 064012 (2019)].</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.084029</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-10, Vol.100 (8), Article 084029
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2316411692
source American Physical Society Journals
subjects Acceleration
Exact solutions
Infinity
Spacetime
Trajectories
title Rindler horizons in a Schwarzschild spacetime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rindler%20horizons%20in%20a%20Schwarzschild%20spacetime&rft.jtitle=Physical%20review.%20D&rft.au=Paithankar,%20Kajol&rft.date=2019-10-14&rft.volume=100&rft.issue=8&rft.artnum=084029&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.084029&rft_dat=%3Cproquest_cross%3E2316411692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316411692&rft_id=info:pmid/&rfr_iscdi=true