Observing a wormhole
If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space must feel the influence of objects propagating in the other space. We show this in the cases...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2019-10, Vol.100 (8), Article 083513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 100 |
creator | Dai, De-Chang Stojkovic, Dejan |
description | If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space must feel the influence of objects propagating in the other space. We show this in the cases of the scalar, electromagnetic, and gravitational field. The case of gravity is perhaps the most interesting. Namely, by studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black hole harbors a traversable wormhole. In particular, with a near future acceleration precision of 10−6 m/s2, a few solar masses star orbiting around Sgr A* on the other side of the wormhole at the distance of a few gravitational radii would leave a detectable imprint on the orbit of the S2 star on our side. Alternatively, one can expect the same effect in black hole binary systems, or a black hole–star binary systems. |
doi_str_mv | 10.1103/PhysRevD.100.083513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316407616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316407616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1f467520c06a92871c02614ef65800381dfc5540e39d99b40a55b72033886b943</originalsourceid><addsrcrecordid>eNo9kE1rwkAYhJfSQsV6660Xoeek8-73Hov9BMFS2vOSxE1V1Nhdtfjvm5LqaYZhmIGHsRtCTgRx9zY7pPewf8gJyGGFInHGelwaZAB35ydPuGSDlBZorYYzRD12PSlTiPv5-mtYDH-auJo1y3DFLupimcLgX_vs8-nxY_SSjSfPr6P7cVZxY7YZ1VIbxVFBF45bQxW4JhlqrSwgLE3rSimJINzUuVKiUKo0HEJYq0snRZ_ddrub2HzvQtr6RbOL6_bSc0FawmjSbUt0rSo2KcVQ-02cr4p48AT_R8AfCbQBfEdA_AL910wD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316407616</pqid></control><display><type>article</type><title>Observing a wormhole</title><source>American Physical Society</source><creator>Dai, De-Chang ; Stojkovic, Dejan</creator><creatorcontrib>Dai, De-Chang ; Stojkovic, Dejan</creatorcontrib><description>If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space must feel the influence of objects propagating in the other space. We show this in the cases of the scalar, electromagnetic, and gravitational field. The case of gravity is perhaps the most interesting. Namely, by studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black hole harbors a traversable wormhole. In particular, with a near future acceleration precision of 10−6 m/s2, a few solar masses star orbiting around Sgr A* on the other side of the wormhole at the distance of a few gravitational radii would leave a detectable imprint on the orbit of the S2 star on our side. Alternatively, one can expect the same effect in black hole binary systems, or a black hole–star binary systems.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.083513</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Acceleration ; Binary stars ; Gravitation ; Gravitational fields ; Milky Way ; Stellar orbits ; Time travel ; Wormholes</subject><ispartof>Physical review. D, 2019-10, Vol.100 (8), Article 083513</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1f467520c06a92871c02614ef65800381dfc5540e39d99b40a55b72033886b943</citedby><cites>FETCH-LOGICAL-c277t-1f467520c06a92871c02614ef65800381dfc5540e39d99b40a55b72033886b943</cites><orcidid>0000-0002-5765-3980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Dai, De-Chang</creatorcontrib><creatorcontrib>Stojkovic, Dejan</creatorcontrib><title>Observing a wormhole</title><title>Physical review. D</title><description>If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space must feel the influence of objects propagating in the other space. We show this in the cases of the scalar, electromagnetic, and gravitational field. The case of gravity is perhaps the most interesting. Namely, by studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black hole harbors a traversable wormhole. In particular, with a near future acceleration precision of 10−6 m/s2, a few solar masses star orbiting around Sgr A* on the other side of the wormhole at the distance of a few gravitational radii would leave a detectable imprint on the orbit of the S2 star on our side. Alternatively, one can expect the same effect in black hole binary systems, or a black hole–star binary systems.</description><subject>Acceleration</subject><subject>Binary stars</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Milky Way</subject><subject>Stellar orbits</subject><subject>Time travel</subject><subject>Wormholes</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwkAYhJfSQsV6660Xoeek8-73Hov9BMFS2vOSxE1V1Nhdtfjvm5LqaYZhmIGHsRtCTgRx9zY7pPewf8gJyGGFInHGelwaZAB35ydPuGSDlBZorYYzRD12PSlTiPv5-mtYDH-auJo1y3DFLupimcLgX_vs8-nxY_SSjSfPr6P7cVZxY7YZ1VIbxVFBF45bQxW4JhlqrSwgLE3rSimJINzUuVKiUKo0HEJYq0snRZ_ddrub2HzvQtr6RbOL6_bSc0FawmjSbUt0rSo2KcVQ-02cr4p48AT_R8AfCbQBfEdA_AL910wD</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Dai, De-Chang</creator><creator>Stojkovic, Dejan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5765-3980</orcidid></search><sort><creationdate>20191010</creationdate><title>Observing a wormhole</title><author>Dai, De-Chang ; Stojkovic, Dejan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1f467520c06a92871c02614ef65800381dfc5540e39d99b40a55b72033886b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Binary stars</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Milky Way</topic><topic>Stellar orbits</topic><topic>Time travel</topic><topic>Wormholes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, De-Chang</creatorcontrib><creatorcontrib>Stojkovic, Dejan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, De-Chang</au><au>Stojkovic, Dejan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing a wormhole</atitle><jtitle>Physical review. D</jtitle><date>2019-10-10</date><risdate>2019</risdate><volume>100</volume><issue>8</issue><artnum>083513</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>If a wormhole smoothly connects two different spacetimes, then the flux cannot be separately conserved in any of these spaces individually. Then objects propagating in the vicinity of a wormhole in one space must feel the influence of objects propagating in the other space. We show this in the cases of the scalar, electromagnetic, and gravitational field. The case of gravity is perhaps the most interesting. Namely, by studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black hole harbors a traversable wormhole. In particular, with a near future acceleration precision of 10−6 m/s2, a few solar masses star orbiting around Sgr A* on the other side of the wormhole at the distance of a few gravitational radii would leave a detectable imprint on the orbit of the S2 star on our side. Alternatively, one can expect the same effect in black hole binary systems, or a black hole–star binary systems.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.083513</doi><orcidid>https://orcid.org/0000-0002-5765-3980</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2019-10, Vol.100 (8), Article 083513 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2316407616 |
source | American Physical Society |
subjects | Acceleration Binary stars Gravitation Gravitational fields Milky Way Stellar orbits Time travel Wormholes |
title | Observing a wormhole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20a%20wormhole&rft.jtitle=Physical%20review.%20D&rft.au=Dai,%20De-Chang&rft.date=2019-10-10&rft.volume=100&rft.issue=8&rft.artnum=083513&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.083513&rft_dat=%3Cproquest_cross%3E2316407616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316407616&rft_id=info:pmid/&rfr_iscdi=true |