Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry
This article investigates how project expertise and complexity jointly impact the decision to adopt open or closed innovation. It identifies four different types of open innovation models—crowdsourcing, coopetition, science-based, and network—and explores the varying conditions of project expertise...
Gespeichert in:
Veröffentlicht in: | California management review 2019-11, Vol.62 (1), p.144-166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | California management review |
container_volume | 62 |
creator | Lee, Yeolan Fong, Eric Barney, Jay Bryan Hawk, Ashton |
description | This article investigates how project expertise and complexity jointly impact the decision to adopt open or closed innovation. It identifies four different types of open innovation models—crowdsourcing, coopetition, science-based, and network—and explores the varying conditions of project expertise and complexity under which firms tend to adopt a particular type. Using large data analysis from pharmaceutical drug development projects, the authors find that complexity moderates the relationship between project expertise and the choice of open or closed innovation and that levels of complexity and project expertise vary between different open innovation models. |
doi_str_mv | 10.1177/0008125619883617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316377475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0008125619883617</sage_id><sourcerecordid>2316377475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ccee72825c6a6dcf6672ee5e075865bb503c8942438ada6f0dcc15c56f3669f23</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRsFbvHhc8p-5ush85idSqhUILtXgM281Lm5pk425S2v_ehAoFwdPjMfObgUHonpIRpVI-EkIUZVzQWKlQUHmBBowKFiguoks06OWg16_Rjfe77pU04gP09bk94heLJ4caXOPx0hZ7wGNb1gUc8MLZdQGlxyufVxs8r6HC06qye93ktnrCk32eQmUAZ86WuNkCXo2WI7zYaldqA22TG110RNr6xh1v0VWmCw93v3eIVq-Tj_F7MJu_TcfPs8BERDWBMQCSKcaN0CI1mRCSAXAgkivB12tOQqPiiEWh0qkWGUmNodxwkYVCxBkLh-jhlFs7-92Cb5KdbV3VVSYspCKUMpK8c5GTyzjrvYMsqV1eandMKEn6SZO_k3YIPiFgbJX7MyBiJiIay747OFm83sC599_IH85Lf-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316377475</pqid></control><display><type>article</type><title>Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry</title><source>PAIS Index</source><source>SAGE Complete A-Z List</source><creator>Lee, Yeolan ; Fong, Eric ; Barney, Jay Bryan ; Hawk, Ashton</creator><creatorcontrib>Lee, Yeolan ; Fong, Eric ; Barney, Jay Bryan ; Hawk, Ashton</creatorcontrib><description>This article investigates how project expertise and complexity jointly impact the decision to adopt open or closed innovation. It identifies four different types of open innovation models—crowdsourcing, coopetition, science-based, and network—and explores the varying conditions of project expertise and complexity under which firms tend to adopt a particular type. Using large data analysis from pharmaceutical drug development projects, the authors find that complexity moderates the relationship between project expertise and the choice of open or closed innovation and that levels of complexity and project expertise vary between different open innovation models.</description><identifier>ISSN: 0008-1256</identifier><identifier>EISSN: 2162-8564</identifier><identifier>DOI: 10.1177/0008125619883617</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Complexity ; Crowdsourcing ; Data analysis ; Development programs ; Drug development ; Experts ; Innovations ; Pharmaceutical industry</subject><ispartof>California management review, 2019-11, Vol.62 (1), p.144-166</ispartof><rights>The Regents of the University of California 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ccee72825c6a6dcf6672ee5e075865bb503c8942438ada6f0dcc15c56f3669f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0008125619883617$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0008125619883617$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21808,27855,27913,27914,43610,43611</link.rule.ids></links><search><creatorcontrib>Lee, Yeolan</creatorcontrib><creatorcontrib>Fong, Eric</creatorcontrib><creatorcontrib>Barney, Jay Bryan</creatorcontrib><creatorcontrib>Hawk, Ashton</creatorcontrib><title>Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry</title><title>California management review</title><description>This article investigates how project expertise and complexity jointly impact the decision to adopt open or closed innovation. It identifies four different types of open innovation models—crowdsourcing, coopetition, science-based, and network—and explores the varying conditions of project expertise and complexity under which firms tend to adopt a particular type. Using large data analysis from pharmaceutical drug development projects, the authors find that complexity moderates the relationship between project expertise and the choice of open or closed innovation and that levels of complexity and project expertise vary between different open innovation models.</description><subject>Complexity</subject><subject>Crowdsourcing</subject><subject>Data analysis</subject><subject>Development programs</subject><subject>Drug development</subject><subject>Experts</subject><subject>Innovations</subject><subject>Pharmaceutical industry</subject><issn>0008-1256</issn><issn>2162-8564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp1kM1Lw0AUxBdRsFbvHhc8p-5ush85idSqhUILtXgM281Lm5pk425S2v_ehAoFwdPjMfObgUHonpIRpVI-EkIUZVzQWKlQUHmBBowKFiguoks06OWg16_Rjfe77pU04gP09bk94heLJ4caXOPx0hZ7wGNb1gUc8MLZdQGlxyufVxs8r6HC06qye93ktnrCk32eQmUAZ86WuNkCXo2WI7zYaldqA22TG110RNr6xh1v0VWmCw93v3eIVq-Tj_F7MJu_TcfPs8BERDWBMQCSKcaN0CI1mRCSAXAgkivB12tOQqPiiEWh0qkWGUmNodxwkYVCxBkLh-jhlFs7-92Cb5KdbV3VVSYspCKUMpK8c5GTyzjrvYMsqV1eandMKEn6SZO_k3YIPiFgbJX7MyBiJiIay747OFm83sC599_IH85Lf-s</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lee, Yeolan</creator><creator>Fong, Eric</creator><creator>Barney, Jay Bryan</creator><creator>Hawk, Ashton</creator><general>SAGE Publications</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20191101</creationdate><title>Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry</title><author>Lee, Yeolan ; Fong, Eric ; Barney, Jay Bryan ; Hawk, Ashton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ccee72825c6a6dcf6672ee5e075865bb503c8942438ada6f0dcc15c56f3669f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><topic>Crowdsourcing</topic><topic>Data analysis</topic><topic>Development programs</topic><topic>Drug development</topic><topic>Experts</topic><topic>Innovations</topic><topic>Pharmaceutical industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yeolan</creatorcontrib><creatorcontrib>Fong, Eric</creatorcontrib><creatorcontrib>Barney, Jay Bryan</creatorcontrib><creatorcontrib>Hawk, Ashton</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>California management review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yeolan</au><au>Fong, Eric</au><au>Barney, Jay Bryan</au><au>Hawk, Ashton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry</atitle><jtitle>California management review</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>62</volume><issue>1</issue><spage>144</spage><epage>166</epage><pages>144-166</pages><issn>0008-1256</issn><eissn>2162-8564</eissn><abstract>This article investigates how project expertise and complexity jointly impact the decision to adopt open or closed innovation. It identifies four different types of open innovation models—crowdsourcing, coopetition, science-based, and network—and explores the varying conditions of project expertise and complexity under which firms tend to adopt a particular type. Using large data analysis from pharmaceutical drug development projects, the authors find that complexity moderates the relationship between project expertise and the choice of open or closed innovation and that levels of complexity and project expertise vary between different open innovation models.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0008125619883617</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-1256 |
ispartof | California management review, 2019-11, Vol.62 (1), p.144-166 |
issn | 0008-1256 2162-8564 |
language | eng |
recordid | cdi_proquest_journals_2316377475 |
source | PAIS Index; SAGE Complete A-Z List |
subjects | Complexity Crowdsourcing Data analysis Development programs Drug development Experts Innovations Pharmaceutical industry |
title | Why Do Experts Solve Complex Problems Using Open Innovation? Evidence from the U.S. Pharmaceutical Industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Do%20Experts%20Solve%20Complex%20Problems%20Using%20Open%20Innovation?%20Evidence%20from%20the%20U.S.%20Pharmaceutical%20Industry&rft.jtitle=California%20management%20review&rft.au=Lee,%20Yeolan&rft.date=2019-11-01&rft.volume=62&rft.issue=1&rft.spage=144&rft.epage=166&rft.pages=144-166&rft.issn=0008-1256&rft.eissn=2162-8564&rft_id=info:doi/10.1177/0008125619883617&rft_dat=%3Cproquest_cross%3E2316377475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316377475&rft_id=info:pmid/&rft_sage_id=10.1177_0008125619883617&rfr_iscdi=true |