End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures
We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox thr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Synnaeve, Gabriel Xu, Qiantong Kahn, Jacob Likhomanenko, Tatiana Grave, Edouard Vineel Pratap Anuroop Sriram Liptchinsky, Vitaliy Collobert, Ronan |
description | We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2316231184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316231184</sourcerecordid><originalsourceid>FETCH-proquest_journals_23162311843</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgSMp3uNB6QGfUpJ2E0aI2WWsR55ojOWPzU69fixYtW3wcOOebkYBxHtM8YWxBQmuHKIpYtmFpygNyLZWgTlNUAorqvIXO6BEqP6F5SosCnIYKR0l_1BEbo6S6wUu6Hk5aoFFQmLaXDlvnDdoVmXfN3WL45ZKs9-Vld6CT0Q-P1tWD9kZ9Us14nH0W5wn_7_UGTlJAMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316231184</pqid></control><display><type>article</type><title>End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures</title><source>Free E- Journals</source><creator>Synnaeve, Gabriel ; Xu, Qiantong ; Kahn, Jacob ; Likhomanenko, Tatiana ; Grave, Edouard ; Vineel Pratap ; Anuroop Sriram ; Liptchinsky, Vitaliy ; Collobert, Ronan</creator><creatorcontrib>Synnaeve, Gabriel ; Xu, Qiantong ; Kahn, Jacob ; Likhomanenko, Tatiana ; Grave, Edouard ; Vineel Pratap ; Anuroop Sriram ; Liptchinsky, Vitaliy ; Collobert, Ronan</creatorcontrib><description>We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acoustics ; Datasets ; Labeling ; Semi-supervised learning ; Speech recognition ; Training ; Transformers</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Synnaeve, Gabriel</creatorcontrib><creatorcontrib>Xu, Qiantong</creatorcontrib><creatorcontrib>Kahn, Jacob</creatorcontrib><creatorcontrib>Likhomanenko, Tatiana</creatorcontrib><creatorcontrib>Grave, Edouard</creatorcontrib><creatorcontrib>Vineel Pratap</creatorcontrib><creatorcontrib>Anuroop Sriram</creatorcontrib><creatorcontrib>Liptchinsky, Vitaliy</creatorcontrib><creatorcontrib>Collobert, Ronan</creatorcontrib><title>End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures</title><title>arXiv.org</title><description>We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models.</description><subject>Acoustics</subject><subject>Datasets</subject><subject>Labeling</subject><subject>Semi-supervised learning</subject><subject>Speech recognition</subject><subject>Training</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNis0KgkAURocgSMp3uNB6QGfUpJ2E0aI2WWsR55ojOWPzU69fixYtW3wcOOebkYBxHtM8YWxBQmuHKIpYtmFpygNyLZWgTlNUAorqvIXO6BEqP6F5SosCnIYKR0l_1BEbo6S6wUu6Hk5aoFFQmLaXDlvnDdoVmXfN3WL45ZKs9-Vld6CT0Q-P1tWD9kZ9Us14nH0W5wn_7_UGTlJAMA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Synnaeve, Gabriel</creator><creator>Xu, Qiantong</creator><creator>Kahn, Jacob</creator><creator>Likhomanenko, Tatiana</creator><creator>Grave, Edouard</creator><creator>Vineel Pratap</creator><creator>Anuroop Sriram</creator><creator>Liptchinsky, Vitaliy</creator><creator>Collobert, Ronan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200715</creationdate><title>End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures</title><author>Synnaeve, Gabriel ; Xu, Qiantong ; Kahn, Jacob ; Likhomanenko, Tatiana ; Grave, Edouard ; Vineel Pratap ; Anuroop Sriram ; Liptchinsky, Vitaliy ; Collobert, Ronan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23162311843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Datasets</topic><topic>Labeling</topic><topic>Semi-supervised learning</topic><topic>Speech recognition</topic><topic>Training</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Synnaeve, Gabriel</creatorcontrib><creatorcontrib>Xu, Qiantong</creatorcontrib><creatorcontrib>Kahn, Jacob</creatorcontrib><creatorcontrib>Likhomanenko, Tatiana</creatorcontrib><creatorcontrib>Grave, Edouard</creatorcontrib><creatorcontrib>Vineel Pratap</creatorcontrib><creatorcontrib>Anuroop Sriram</creatorcontrib><creatorcontrib>Liptchinsky, Vitaliy</creatorcontrib><creatorcontrib>Collobert, Ronan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Synnaeve, Gabriel</au><au>Xu, Qiantong</au><au>Kahn, Jacob</au><au>Likhomanenko, Tatiana</au><au>Grave, Edouard</au><au>Vineel Pratap</au><au>Anuroop Sriram</au><au>Liptchinsky, Vitaliy</au><au>Collobert, Ronan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures</atitle><jtitle>arXiv.org</jtitle><date>2020-07-15</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and leverage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2316231184 |
source | Free E- Journals |
subjects | Acoustics Datasets Labeling Semi-supervised learning Speech recognition Training Transformers |
title | End-to-end ASR: from Supervised to Semi-Supervised Learning with Modern Architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=End-to-end%20ASR:%20from%20Supervised%20to%20Semi-Supervised%20Learning%20with%20Modern%20Architectures&rft.jtitle=arXiv.org&rft.au=Synnaeve,%20Gabriel&rft.date=2020-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2316231184%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316231184&rft_id=info:pmid/&rfr_iscdi=true |