Uranium-based materials for thermoelectric applications

Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-11, Vol.115 (21)
Hauptverfasser: Svanidze, E., Veremchuk, I., Leithe-Jasper, A., Grin, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 115
creator Svanidze, E.
Veremchuk, I.
Leithe-Jasper, A.
Grin, Yu
description Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of U 3 T 3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit Z T ≈ 0.02 was obtained for the U3Pt3Sb4 compound in the − 100   °C ≤ T ≤ 100   °C temperature range, which makes this material interesting for further development in aerospace applications.
doi_str_mv 10.1063/1.5128593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316122787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316122787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha5JpdjdHKVaFghd7DvmYYEq3WZNU8N-72oJ3YWAYeJhhXkKuGZ0x2sA9mwnGOyHhhEwYbdsaGOtOyYRSCnUjBTsnFzlvxlFwgAlp10nvwr6vjc7oql4XTEFvc-Vjqso7pj7iFm1JwVZ6GLbB6hLiLl-SMz8yvDr2KVkvH98Wz_Xq9ell8bCqLTS81N4ZJ7Q0RmCLyAyiBWmRuk6bbj73YLgTjXTeg0MnORvLdeilpZZ64DAlN4e9Q4ofe8xFbeI-7caTigNrGOdt147q9qBsijkn9GpIodfpSzGqfnJRTB1zGe3dwWYbyu8z_8OfMf1BNTgP3yYjcjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316122787</pqid></control><display><type>article</type><title>Uranium-based materials for thermoelectric applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</creator><creatorcontrib>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</creatorcontrib><description>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of U 3 T 3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit Z T ≈ 0.02 was obtained for the U3Pt3Sb4 compound in the − 100   °C ≤ T ≤ 100   °C temperature range, which makes this material interesting for further development in aerospace applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5128593</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conduction electrons ; Crystal structure ; Figure of merit ; Nickel compounds ; Palladium ; Platinum ; Properties (attributes) ; Seebeck effect ; Ternary systems ; Thermal conductivity ; Thermoelectric materials ; Uranium ; Uranium compounds</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</citedby><cites>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</cites><orcidid>0000-0002-8665-2274 ; 0000-0003-2893-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5128593$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Veremchuk, I.</creatorcontrib><creatorcontrib>Leithe-Jasper, A.</creatorcontrib><creatorcontrib>Grin, Yu</creatorcontrib><title>Uranium-based materials for thermoelectric applications</title><title>Applied physics letters</title><description>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of U 3 T 3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit Z T ≈ 0.02 was obtained for the U3Pt3Sb4 compound in the − 100   °C ≤ T ≤ 100   °C temperature range, which makes this material interesting for further development in aerospace applications.</description><subject>Applied physics</subject><subject>Conduction electrons</subject><subject>Crystal structure</subject><subject>Figure of merit</subject><subject>Nickel compounds</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Properties (attributes)</subject><subject>Seebeck effect</subject><subject>Ternary systems</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Uranium</subject><subject>Uranium compounds</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha5JpdjdHKVaFghd7DvmYYEq3WZNU8N-72oJ3YWAYeJhhXkKuGZ0x2sA9mwnGOyHhhEwYbdsaGOtOyYRSCnUjBTsnFzlvxlFwgAlp10nvwr6vjc7oql4XTEFvc-Vjqso7pj7iFm1JwVZ6GLbB6hLiLl-SMz8yvDr2KVkvH98Wz_Xq9ell8bCqLTS81N4ZJ7Q0RmCLyAyiBWmRuk6bbj73YLgTjXTeg0MnORvLdeilpZZ64DAlN4e9Q4ofe8xFbeI-7caTigNrGOdt147q9qBsijkn9GpIodfpSzGqfnJRTB1zGe3dwWYbyu8z_8OfMf1BNTgP3yYjcjY</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Svanidze, E.</creator><creator>Veremchuk, I.</creator><creator>Leithe-Jasper, A.</creator><creator>Grin, Yu</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8665-2274</orcidid><orcidid>https://orcid.org/0000-0003-2893-1379</orcidid></search><sort><creationdate>20191118</creationdate><title>Uranium-based materials for thermoelectric applications</title><author>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Conduction electrons</topic><topic>Crystal structure</topic><topic>Figure of merit</topic><topic>Nickel compounds</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Properties (attributes)</topic><topic>Seebeck effect</topic><topic>Ternary systems</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Uranium</topic><topic>Uranium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Veremchuk, I.</creatorcontrib><creatorcontrib>Leithe-Jasper, A.</creatorcontrib><creatorcontrib>Grin, Yu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svanidze, E.</au><au>Veremchuk, I.</au><au>Leithe-Jasper, A.</au><au>Grin, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium-based materials for thermoelectric applications</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-18</date><risdate>2019</risdate><volume>115</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of U 3 T 3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit Z T ≈ 0.02 was obtained for the U3Pt3Sb4 compound in the − 100   °C ≤ T ≤ 100   °C temperature range, which makes this material interesting for further development in aerospace applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5128593</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8665-2274</orcidid><orcidid>https://orcid.org/0000-0003-2893-1379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-11, Vol.115 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2316122787
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Conduction electrons
Crystal structure
Figure of merit
Nickel compounds
Palladium
Platinum
Properties (attributes)
Seebeck effect
Ternary systems
Thermal conductivity
Thermoelectric materials
Uranium
Uranium compounds
title Uranium-based materials for thermoelectric applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium-based%20materials%20for%20thermoelectric%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Svanidze,%20E.&rft.date=2019-11-18&rft.volume=115&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5128593&rft_dat=%3Cproquest_cross%3E2316122787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316122787&rft_id=info:pmid/&rfr_iscdi=true