Uranium-based materials for thermoelectric applications
Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their prope...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-11, Vol.115 (21) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 115 |
creator | Svanidze, E. Veremchuk, I. Leithe-Jasper, A. Grin, Yu |
description | Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of
U
3
T
3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit
Z
T
≈
0.02 was obtained for the U3Pt3Sb4 compound in the
−
100
°C
≤
T
≤
100
°C temperature range, which makes this material interesting for further development in aerospace applications. |
doi_str_mv | 10.1063/1.5128593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316122787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316122787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha5JpdjdHKVaFghd7DvmYYEq3WZNU8N-72oJ3YWAYeJhhXkKuGZ0x2sA9mwnGOyHhhEwYbdsaGOtOyYRSCnUjBTsnFzlvxlFwgAlp10nvwr6vjc7oql4XTEFvc-Vjqso7pj7iFm1JwVZ6GLbB6hLiLl-SMz8yvDr2KVkvH98Wz_Xq9ell8bCqLTS81N4ZJ7Q0RmCLyAyiBWmRuk6bbj73YLgTjXTeg0MnORvLdeilpZZ64DAlN4e9Q4ofe8xFbeI-7caTigNrGOdt147q9qBsijkn9GpIodfpSzGqfnJRTB1zGe3dwWYbyu8z_8OfMf1BNTgP3yYjcjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316122787</pqid></control><display><type>article</type><title>Uranium-based materials for thermoelectric applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</creator><creatorcontrib>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</creatorcontrib><description>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of
U
3
T
3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit
Z
T
≈
0.02 was obtained for the U3Pt3Sb4 compound in the
−
100
°C
≤
T
≤
100
°C temperature range, which makes this material interesting for further development in aerospace applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5128593</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conduction electrons ; Crystal structure ; Figure of merit ; Nickel compounds ; Palladium ; Platinum ; Properties (attributes) ; Seebeck effect ; Ternary systems ; Thermal conductivity ; Thermoelectric materials ; Uranium ; Uranium compounds</subject><ispartof>Applied physics letters, 2019-11, Vol.115 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</citedby><cites>FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</cites><orcidid>0000-0002-8665-2274 ; 0000-0003-2893-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5128593$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Veremchuk, I.</creatorcontrib><creatorcontrib>Leithe-Jasper, A.</creatorcontrib><creatorcontrib>Grin, Yu</creatorcontrib><title>Uranium-based materials for thermoelectric applications</title><title>Applied physics letters</title><description>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of
U
3
T
3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit
Z
T
≈
0.02 was obtained for the U3Pt3Sb4 compound in the
−
100
°C
≤
T
≤
100
°C temperature range, which makes this material interesting for further development in aerospace applications.</description><subject>Applied physics</subject><subject>Conduction electrons</subject><subject>Crystal structure</subject><subject>Figure of merit</subject><subject>Nickel compounds</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Properties (attributes)</subject><subject>Seebeck effect</subject><subject>Ternary systems</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Uranium</subject><subject>Uranium compounds</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha5JpdjdHKVaFghd7DvmYYEq3WZNU8N-72oJ3YWAYeJhhXkKuGZ0x2sA9mwnGOyHhhEwYbdsaGOtOyYRSCnUjBTsnFzlvxlFwgAlp10nvwr6vjc7oql4XTEFvc-Vjqso7pj7iFm1JwVZ6GLbB6hLiLl-SMz8yvDr2KVkvH98Wz_Xq9ell8bCqLTS81N4ZJ7Q0RmCLyAyiBWmRuk6bbj73YLgTjXTeg0MnORvLdeilpZZ64DAlN4e9Q4ofe8xFbeI-7caTigNrGOdt147q9qBsijkn9GpIodfpSzGqfnJRTB1zGe3dwWYbyu8z_8OfMf1BNTgP3yYjcjY</recordid><startdate>20191118</startdate><enddate>20191118</enddate><creator>Svanidze, E.</creator><creator>Veremchuk, I.</creator><creator>Leithe-Jasper, A.</creator><creator>Grin, Yu</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8665-2274</orcidid><orcidid>https://orcid.org/0000-0003-2893-1379</orcidid></search><sort><creationdate>20191118</creationdate><title>Uranium-based materials for thermoelectric applications</title><author>Svanidze, E. ; Veremchuk, I. ; Leithe-Jasper, A. ; Grin, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-fdbd5a9bb5e7ee1beec39ce0d8ab844f3b2d569dff3ded921921d8ef9c0c0f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Conduction electrons</topic><topic>Crystal structure</topic><topic>Figure of merit</topic><topic>Nickel compounds</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Properties (attributes)</topic><topic>Seebeck effect</topic><topic>Ternary systems</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Uranium</topic><topic>Uranium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svanidze, E.</creatorcontrib><creatorcontrib>Veremchuk, I.</creatorcontrib><creatorcontrib>Leithe-Jasper, A.</creatorcontrib><creatorcontrib>Grin, Yu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svanidze, E.</au><au>Veremchuk, I.</au><au>Leithe-Jasper, A.</au><au>Grin, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium-based materials for thermoelectric applications</atitle><jtitle>Applied physics letters</jtitle><date>2019-11-18</date><risdate>2019</risdate><volume>115</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Uranium-based compounds possess several properties which make them suitable candidates for thermoelectric applications—complex crystal structures made of heavy components, electrons with enhanced effective masses, as well as low thermal conductivity. However, the difficulty in predicting their properties by computational means, coupled with the lack of experimental investigations on these peculiar systems, limits our understanding of the effect of 5f- and conduction electron hybridization on the Seebeck coefficient, as well as electric and thermal conductivities. In this work, we examine a family of uranium-based materials with a crystal structure of the ternary Zintl phase Y3Au3Sb4. The thermoelectric properties of
U
3
T
3Sb4 (T = Ni, Pd, and Pt) compounds are highly dependent upon their microstructures and compositions, arising from the differences in their synthesis. The maximum value of the thermoelectric figure of merit
Z
T
≈
0.02 was obtained for the U3Pt3Sb4 compound in the
−
100
°C
≤
T
≤
100
°C temperature range, which makes this material interesting for further development in aerospace applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5128593</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8665-2274</orcidid><orcidid>https://orcid.org/0000-0003-2893-1379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-11, Vol.115 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2316122787 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Conduction electrons Crystal structure Figure of merit Nickel compounds Palladium Platinum Properties (attributes) Seebeck effect Ternary systems Thermal conductivity Thermoelectric materials Uranium Uranium compounds |
title | Uranium-based materials for thermoelectric applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium-based%20materials%20for%20thermoelectric%20applications&rft.jtitle=Applied%20physics%20letters&rft.au=Svanidze,%20E.&rft.date=2019-11-18&rft.volume=115&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5128593&rft_dat=%3Cproquest_cross%3E2316122787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316122787&rft_id=info:pmid/&rfr_iscdi=true |