ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission

The ATmospheric LIDAR (Light Detection and Ranging), ATLID, is part of the payload of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme ( http://esamultimedia.esa.int/docs/SP_1279_1_EarthCA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CEAS space journal 2019-12, Vol.11 (4), p.423-435
Hauptverfasser: Pereira do Carmo, João, de Villele, Geraud, Helière, Arnaud, Wallace, Kotska, Lefebvre, Alain, Chassat, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 4
container_start_page 423
container_title CEAS space journal
container_volume 11
creator Pereira do Carmo, João
de Villele, Geraud
Helière, Arnaud
Wallace, Kotska
Lefebvre, Alain
Chassat, François
description The ATmospheric LIDAR (Light Detection and Ranging), ATLID, is part of the payload of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme ( http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf ). The EarthCARE payload consists of four instruments that will, in a synergetic manner, retrieve vertical profiles of clouds and aerosols, and the characteristics of the radiative and micro-physical properties, to determine flux gradients within the atmosphere and top of atmosphere radiance and flux. ATLID’s task is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries. With that purpose ATLID emits 
doi_str_mv 10.1007/s12567-019-00284-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316007805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316007805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-17efd987f692a4c79896e86d9779f3e669ba0c3527956d965b5aa565bdf1da563</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWGpfwFXArdEkM_lbDnWqhYJQ6zpkMomdajs1SRe-vWlHdOfqXi7n-y4cAK4JviMYi_tIKOMCYaIQxlSWiJ-BEZFcIsoIPv_dMb0Ekxg3OFOkxLgkIzCrVov5wy2sXypo0raP-7ULnYWNse_RmpRcgBmoltD3Aaa1O5G1CWk9rZY13HYxdv3uClx48xHd5GeOweusXk2f0OL5cT6tFsgWRCVEhPOtksJzRU1phZKKO8lbJYTyheNcNQbbglGhWL5y1jBjWB6tJ21eijG4GXr3of88uJj0pj-EXX6paUF4tiExyxQdKBv6GIPzeh-6rQlfmmB9VKYHZTor0ydl-lhdDKGY4d2bC3_V_6S-AYpEavM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316007805</pqid></control><display><type>article</type><title>ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pereira do Carmo, João ; de Villele, Geraud ; Helière, Arnaud ; Wallace, Kotska ; Lefebvre, Alain ; Chassat, François</creator><creatorcontrib>Pereira do Carmo, João ; de Villele, Geraud ; Helière, Arnaud ; Wallace, Kotska ; Lefebvre, Alain ; Chassat, François</creatorcontrib><description>The ATmospheric LIDAR (Light Detection and Ranging), ATLID, is part of the payload of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme ( http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf ). The EarthCARE payload consists of four instruments that will, in a synergetic manner, retrieve vertical profiles of clouds and aerosols, and the characteristics of the radiative and micro-physical properties, to determine flux gradients within the atmosphere and top of atmosphere radiance and flux. ATLID’s task is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries. With that purpose ATLID emits &lt; 35 ns duration laser pulses with 40 mJ energy in the UV, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The backscatter signal is collected by a 620 mm aperture telescope and is then filtered and redirected through the optics of the instrument focal plane assembly, in such a way that the atmospheric Mie and Rayleigh scattering contributions are separated and independently measured. After the manufacturing, qualification and delivery of all ATLID units, the optical and electrical integration has been conducted in parallel to assemble the Optical Flight Model (OFM) and the Electrical Flight Model (EFM). These two models, precursor to the instrument integration, allowed the early execution of the first performance and functional tests. Following these initial verification activities, and with the latest integration of the flight laser cooling system, the instrument assembly approaches its final flight configuration, paving the way for the ambient performance and environmental test campaigns at full instrument level.</description><identifier>ISSN: 1868-2502</identifier><identifier>EISSN: 1868-2510</identifier><identifier>DOI: 10.1007/s12567-019-00284-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerosols ; Aerospace Technology and Astronautics ; Apertures ; Assembly ; Astronomical instruments ; Atmospheric models ; Backscattering ; Clouds ; Cooling systems ; Engineering ; Environmental testing ; Focal plane ; Functional testing ; Laser cooling ; Lidar ; Original Paper ; Physical properties ; Radiance ; Rayleigh scattering ; Satellite tracking ; Thin films</subject><ispartof>CEAS space journal, 2019-12, Vol.11 (4), p.423-435</ispartof><rights>CEAS 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-17efd987f692a4c79896e86d9779f3e669ba0c3527956d965b5aa565bdf1da563</citedby><cites>FETCH-LOGICAL-c319t-17efd987f692a4c79896e86d9779f3e669ba0c3527956d965b5aa565bdf1da563</cites><orcidid>0000-0002-6582-1251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12567-019-00284-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12567-019-00284-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pereira do Carmo, João</creatorcontrib><creatorcontrib>de Villele, Geraud</creatorcontrib><creatorcontrib>Helière, Arnaud</creatorcontrib><creatorcontrib>Wallace, Kotska</creatorcontrib><creatorcontrib>Lefebvre, Alain</creatorcontrib><creatorcontrib>Chassat, François</creatorcontrib><title>ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission</title><title>CEAS space journal</title><addtitle>CEAS Space J</addtitle><description>The ATmospheric LIDAR (Light Detection and Ranging), ATLID, is part of the payload of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme ( http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf ). The EarthCARE payload consists of four instruments that will, in a synergetic manner, retrieve vertical profiles of clouds and aerosols, and the characteristics of the radiative and micro-physical properties, to determine flux gradients within the atmosphere and top of atmosphere radiance and flux. ATLID’s task is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries. With that purpose ATLID emits &lt; 35 ns duration laser pulses with 40 mJ energy in the UV, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The backscatter signal is collected by a 620 mm aperture telescope and is then filtered and redirected through the optics of the instrument focal plane assembly, in such a way that the atmospheric Mie and Rayleigh scattering contributions are separated and independently measured. After the manufacturing, qualification and delivery of all ATLID units, the optical and electrical integration has been conducted in parallel to assemble the Optical Flight Model (OFM) and the Electrical Flight Model (EFM). These two models, precursor to the instrument integration, allowed the early execution of the first performance and functional tests. Following these initial verification activities, and with the latest integration of the flight laser cooling system, the instrument assembly approaches its final flight configuration, paving the way for the ambient performance and environmental test campaigns at full instrument level.</description><subject>Aerosols</subject><subject>Aerospace Technology and Astronautics</subject><subject>Apertures</subject><subject>Assembly</subject><subject>Astronomical instruments</subject><subject>Atmospheric models</subject><subject>Backscattering</subject><subject>Clouds</subject><subject>Cooling systems</subject><subject>Engineering</subject><subject>Environmental testing</subject><subject>Focal plane</subject><subject>Functional testing</subject><subject>Laser cooling</subject><subject>Lidar</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Radiance</subject><subject>Rayleigh scattering</subject><subject>Satellite tracking</subject><subject>Thin films</subject><issn>1868-2502</issn><issn>1868-2510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWGpfwFXArdEkM_lbDnWqhYJQ6zpkMomdajs1SRe-vWlHdOfqXi7n-y4cAK4JviMYi_tIKOMCYaIQxlSWiJ-BEZFcIsoIPv_dMb0Ekxg3OFOkxLgkIzCrVov5wy2sXypo0raP-7ULnYWNse_RmpRcgBmoltD3Aaa1O5G1CWk9rZY13HYxdv3uClx48xHd5GeOweusXk2f0OL5cT6tFsgWRCVEhPOtksJzRU1phZKKO8lbJYTyheNcNQbbglGhWL5y1jBjWB6tJ21eijG4GXr3of88uJj0pj-EXX6paUF4tiExyxQdKBv6GIPzeh-6rQlfmmB9VKYHZTor0ydl-lhdDKGY4d2bC3_V_6S-AYpEavM</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pereira do Carmo, João</creator><creator>de Villele, Geraud</creator><creator>Helière, Arnaud</creator><creator>Wallace, Kotska</creator><creator>Lefebvre, Alain</creator><creator>Chassat, François</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6582-1251</orcidid></search><sort><creationdate>20191201</creationdate><title>ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission</title><author>Pereira do Carmo, João ; de Villele, Geraud ; Helière, Arnaud ; Wallace, Kotska ; Lefebvre, Alain ; Chassat, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-17efd987f692a4c79896e86d9779f3e669ba0c3527956d965b5aa565bdf1da563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Aerospace Technology and Astronautics</topic><topic>Apertures</topic><topic>Assembly</topic><topic>Astronomical instruments</topic><topic>Atmospheric models</topic><topic>Backscattering</topic><topic>Clouds</topic><topic>Cooling systems</topic><topic>Engineering</topic><topic>Environmental testing</topic><topic>Focal plane</topic><topic>Functional testing</topic><topic>Laser cooling</topic><topic>Lidar</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Radiance</topic><topic>Rayleigh scattering</topic><topic>Satellite tracking</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira do Carmo, João</creatorcontrib><creatorcontrib>de Villele, Geraud</creatorcontrib><creatorcontrib>Helière, Arnaud</creatorcontrib><creatorcontrib>Wallace, Kotska</creatorcontrib><creatorcontrib>Lefebvre, Alain</creatorcontrib><creatorcontrib>Chassat, François</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CEAS space journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira do Carmo, João</au><au>de Villele, Geraud</au><au>Helière, Arnaud</au><au>Wallace, Kotska</au><au>Lefebvre, Alain</au><au>Chassat, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission</atitle><jtitle>CEAS space journal</jtitle><stitle>CEAS Space J</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>11</volume><issue>4</issue><spage>423</spage><epage>435</epage><pages>423-435</pages><issn>1868-2502</issn><eissn>1868-2510</eissn><abstract>The ATmospheric LIDAR (Light Detection and Ranging), ATLID, is part of the payload of the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme ( http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf ). The EarthCARE payload consists of four instruments that will, in a synergetic manner, retrieve vertical profiles of clouds and aerosols, and the characteristics of the radiative and micro-physical properties, to determine flux gradients within the atmosphere and top of atmosphere radiance and flux. ATLID’s task is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries. With that purpose ATLID emits &lt; 35 ns duration laser pulses with 40 mJ energy in the UV, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The backscatter signal is collected by a 620 mm aperture telescope and is then filtered and redirected through the optics of the instrument focal plane assembly, in such a way that the atmospheric Mie and Rayleigh scattering contributions are separated and independently measured. After the manufacturing, qualification and delivery of all ATLID units, the optical and electrical integration has been conducted in parallel to assemble the Optical Flight Model (OFM) and the Electrical Flight Model (EFM). These two models, precursor to the instrument integration, allowed the early execution of the first performance and functional tests. Following these initial verification activities, and with the latest integration of the flight laser cooling system, the instrument assembly approaches its final flight configuration, paving the way for the ambient performance and environmental test campaigns at full instrument level.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s12567-019-00284-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6582-1251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-2502
ispartof CEAS space journal, 2019-12, Vol.11 (4), p.423-435
issn 1868-2502
1868-2510
language eng
recordid cdi_proquest_journals_2316007805
source SpringerLink Journals - AutoHoldings
subjects Aerosols
Aerospace Technology and Astronautics
Apertures
Assembly
Astronomical instruments
Atmospheric models
Backscattering
Clouds
Cooling systems
Engineering
Environmental testing
Focal plane
Functional testing
Laser cooling
Lidar
Original Paper
Physical properties
Radiance
Rayleigh scattering
Satellite tracking
Thin films
title ATLID, ESA atmospheric backscatter LIDAR for the ESA EarthCARE mission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATLID,%20ESA%20atmospheric%20backscatter%20LIDAR%20for%20the%20ESA%20EarthCARE%20mission&rft.jtitle=CEAS%20space%20journal&rft.au=Pereira%20do%20Carmo,%20Jo%C3%A3o&rft.date=2019-12-01&rft.volume=11&rft.issue=4&rft.spage=423&rft.epage=435&rft.pages=423-435&rft.issn=1868-2502&rft.eissn=1868-2510&rft_id=info:doi/10.1007/s12567-019-00284-6&rft_dat=%3Cproquest_cross%3E2316007805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316007805&rft_id=info:pmid/&rfr_iscdi=true