Distributive laws in residuated binars
In residuated binars there are six non-obvious distributivity identities of · , / , \ over ∧ , ∨ . We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these i...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2019-12, Vol.80 (4), p.1-13, Article 54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Algebra universalis |
container_volume | 80 |
creator | Fussner, Wesley Jipsen, Peter |
description | In residuated binars there are six non-obvious distributivity identities of
·
,
/
,
\
over
∧
,
∨
. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these. |
doi_str_mv | 10.1007/s00012-019-0625-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316007740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316007740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-480fd72416581124896f4ff33cbd8b2c2d831711f1c8f7f8d2f415913c6d5cdb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC4C06kyZNepT1Exa86Dm0-ZAsa7smreK_N6WCJ09zmOd9h3kIOUe4QgB5nQAAGQVsKNRMUDwgBXIGVDWIh6TIa0YF43BMTlLazrBsREEub0MaY-imMXy6ctd-pTL0ZXQp2KkdnS270LcxnZIj3-6SO_udK_J6f_eyfqSb54en9c2GmgrrkXIF3krGsRYKkXHV1J57X1Wms6pjhllVoUT0aJSXXlnmOYoGK1NbYWxXrcjF0ruPw8fk0qi3wxT7fFKzfCF_KjlkChfKxCGl6Lzex_Dexm-NoGcdetGhsw4969CYM2zJpMz2by7-Nf8f-gHXh2A6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316007740</pqid></control><display><type>article</type><title>Distributive laws in residuated binars</title><source>Springer Nature - Complete Springer Journals</source><creator>Fussner, Wesley ; Jipsen, Peter</creator><creatorcontrib>Fussner, Wesley ; Jipsen, Peter</creatorcontrib><description>In residuated binars there are six non-obvious distributivity identities of
·
,
/
,
\
over
∧
,
∨
. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-019-0625-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra universalis, 2019-12, Vol.80 (4), p.1-13, Article 54</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-480fd72416581124896f4ff33cbd8b2c2d831711f1c8f7f8d2f415913c6d5cdb3</citedby><cites>FETCH-LOGICAL-c316t-480fd72416581124896f4ff33cbd8b2c2d831711f1c8f7f8d2f415913c6d5cdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00012-019-0625-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00012-019-0625-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fussner, Wesley</creatorcontrib><creatorcontrib>Jipsen, Peter</creatorcontrib><title>Distributive laws in residuated binars</title><title>Algebra universalis</title><addtitle>Algebra Univers</addtitle><description>In residuated binars there are six non-obvious distributivity identities of
·
,
/
,
\
over
∧
,
∨
. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFd_gLeC4C06kyZNepT1Exa86Dm0-ZAsa7smreK_N6WCJ09zmOd9h3kIOUe4QgB5nQAAGQVsKNRMUDwgBXIGVDWIh6TIa0YF43BMTlLazrBsREEub0MaY-imMXy6ctd-pTL0ZXQp2KkdnS270LcxnZIj3-6SO_udK_J6f_eyfqSb54en9c2GmgrrkXIF3krGsRYKkXHV1J57X1Wms6pjhllVoUT0aJSXXlnmOYoGK1NbYWxXrcjF0ruPw8fk0qi3wxT7fFKzfCF_KjlkChfKxCGl6Lzex_Dexm-NoGcdetGhsw4969CYM2zJpMz2by7-Nf8f-gHXh2A6</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Fussner, Wesley</creator><creator>Jipsen, Peter</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Distributive laws in residuated binars</title><author>Fussner, Wesley ; Jipsen, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-480fd72416581124896f4ff33cbd8b2c2d831711f1c8f7f8d2f415913c6d5cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fussner, Wesley</creatorcontrib><creatorcontrib>Jipsen, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fussner, Wesley</au><au>Jipsen, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributive laws in residuated binars</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra Univers</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>80</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>54</artnum><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>In residuated binars there are six non-obvious distributivity identities of
·
,
/
,
\
over
∧
,
∨
. We show that in residuated binars with distributive lattice reducts there are some dependencies among these identities; specifically, there are six pairs of identities that imply another one of these identities, and we provide counterexamples to show that no other dependencies exist among these.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00012-019-0625-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5240 |
ispartof | Algebra universalis, 2019-12, Vol.80 (4), p.1-13, Article 54 |
issn | 0002-5240 1420-8911 |
language | eng |
recordid | cdi_proquest_journals_2316007740 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Mathematics Mathematics and Statistics |
title | Distributive laws in residuated binars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributive%20laws%20in%20residuated%20binars&rft.jtitle=Algebra%20universalis&rft.au=Fussner,%20Wesley&rft.date=2019-12-01&rft.volume=80&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=54&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-019-0625-1&rft_dat=%3Cproquest_cross%3E2316007740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316007740&rft_id=info:pmid/&rfr_iscdi=true |