A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series

Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the dilated c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2020-03, Vol.39 (1), Article 30
Hauptverfasser: Wang, Rongxi, Peng, Caiyuan, Gao, Jianmin, Gao, Zhiyong, Jiang, Hongquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Wang, Rongxi
Peng, Caiyuan
Gao, Jianmin
Gao, Zhiyong
Jiang, Hongquan
description Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the dilated convolution-long short-term memory (DC-LSTM), is proposed. The dilated convolution operation is used to extract the correlation between the predicted variable and correlational variables. The features extracted by dilated convolution operation and historical data of predicted variable are input into LSTM to obtain the desired multi-step prediction result. Furthermore, cross-correlation analyses (CCA) are applied to calculate the reasonable maximum prediction steps of chaotic time series. Actual applications of multi-step prediction were studied to demonstrate the effectiveness of the proposed model which has superiorities in RMSE, MAE and prediction accuracy because of the extraction of correlation between the predicted variable and correlational variables. Moreover, the proposed DC-LSTM model provides a new method for prediction of chaotic time series and lays a foundation for scientific data analysis of chaotic time series monitoring systems.
doi_str_mv 10.1007/s40314-019-1006-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2316007325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316007325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dc8ed63703d92f5ad5b0531caaca56b7477a746e9ef04368237f31c87a9a9a323</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Ek0ybtcVn8ghUPrueQTVPN2m1qkir-e7NW8CRzGIb3Y-BB6JzRS0apvIoFBVYQymqSb0H4AZqxikpCgfJDNOMcKgKCwjE6iXFLKUhWFDOkFrhxnU62wcb3H74bk_M97m369OGNbHTMyupp_YB3vrEdbn3Au7FLjsRkBzwE2zjzE_EtNq_aJ2dwcjuLow3OxlN01Oou2rPfPUfPN9fr5R1ZPd7eLxcrYqCsE2lMZRsBkkJT87bUTbmhJTCjtdGl2MhCSi0LYWvb0gJExUG2Wa6krvMAhzm6mHqH4N9HG5Pa-jH0-aXiwERGBLzMLja5TPAxBtuqIbidDl-KUbXnqCaOKnPc30Ltm_mUidnbv9jw1_x_6BuWgXWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316007325</pqid></control><display><type>article</type><title>A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Rongxi ; Peng, Caiyuan ; Gao, Jianmin ; Gao, Zhiyong ; Jiang, Hongquan</creator><creatorcontrib>Wang, Rongxi ; Peng, Caiyuan ; Gao, Jianmin ; Gao, Zhiyong ; Jiang, Hongquan</creatorcontrib><description>Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the dilated convolution-long short-term memory (DC-LSTM), is proposed. The dilated convolution operation is used to extract the correlation between the predicted variable and correlational variables. The features extracted by dilated convolution operation and historical data of predicted variable are input into LSTM to obtain the desired multi-step prediction result. Furthermore, cross-correlation analyses (CCA) are applied to calculate the reasonable maximum prediction steps of chaotic time series. Actual applications of multi-step prediction were studied to demonstrate the effectiveness of the proposed model which has superiorities in RMSE, MAE and prediction accuracy because of the extraction of correlation between the predicted variable and correlational variables. Moreover, the proposed DC-LSTM model provides a new method for prediction of chaotic time series and lays a foundation for scientific data analysis of chaotic time series monitoring systems.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-019-1006-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Chaos theory ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Convolution ; Correlation analysis ; Data analysis ; Feature extraction ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Prediction models ; Time series</subject><ispartof>Computational &amp; applied mathematics, 2020-03, Vol.39 (1), Article 30</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><rights>2019© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-dc8ed63703d92f5ad5b0531caaca56b7477a746e9ef04368237f31c87a9a9a323</citedby><cites>FETCH-LOGICAL-c359t-dc8ed63703d92f5ad5b0531caaca56b7477a746e9ef04368237f31c87a9a9a323</cites><orcidid>0000-0001-5958-0642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-019-1006-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-019-1006-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Rongxi</creatorcontrib><creatorcontrib>Peng, Caiyuan</creatorcontrib><creatorcontrib>Gao, Jianmin</creatorcontrib><creatorcontrib>Gao, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Hongquan</creatorcontrib><title>A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the dilated convolution-long short-term memory (DC-LSTM), is proposed. The dilated convolution operation is used to extract the correlation between the predicted variable and correlational variables. The features extracted by dilated convolution operation and historical data of predicted variable are input into LSTM to obtain the desired multi-step prediction result. Furthermore, cross-correlation analyses (CCA) are applied to calculate the reasonable maximum prediction steps of chaotic time series. Actual applications of multi-step prediction were studied to demonstrate the effectiveness of the proposed model which has superiorities in RMSE, MAE and prediction accuracy because of the extraction of correlation between the predicted variable and correlational variables. Moreover, the proposed DC-LSTM model provides a new method for prediction of chaotic time series and lays a foundation for scientific data analysis of chaotic time series monitoring systems.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Chaos theory</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convolution</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Feature extraction</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Prediction models</subject><subject>Time series</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Ek0ybtcVn8ghUPrueQTVPN2m1qkir-e7NW8CRzGIb3Y-BB6JzRS0apvIoFBVYQymqSb0H4AZqxikpCgfJDNOMcKgKCwjE6iXFLKUhWFDOkFrhxnU62wcb3H74bk_M97m369OGNbHTMyupp_YB3vrEdbn3Au7FLjsRkBzwE2zjzE_EtNq_aJ2dwcjuLow3OxlN01Oou2rPfPUfPN9fr5R1ZPd7eLxcrYqCsE2lMZRsBkkJT87bUTbmhJTCjtdGl2MhCSi0LYWvb0gJExUG2Wa6krvMAhzm6mHqH4N9HG5Pa-jH0-aXiwERGBLzMLja5TPAxBtuqIbidDl-KUbXnqCaOKnPc30Ltm_mUidnbv9jw1_x_6BuWgXWE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wang, Rongxi</creator><creator>Peng, Caiyuan</creator><creator>Gao, Jianmin</creator><creator>Gao, Zhiyong</creator><creator>Jiang, Hongquan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5958-0642</orcidid></search><sort><creationdate>20200301</creationdate><title>A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series</title><author>Wang, Rongxi ; Peng, Caiyuan ; Gao, Jianmin ; Gao, Zhiyong ; Jiang, Hongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dc8ed63703d92f5ad5b0531caaca56b7477a746e9ef04368237f31c87a9a9a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Chaos theory</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convolution</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Feature extraction</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Prediction models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rongxi</creatorcontrib><creatorcontrib>Peng, Caiyuan</creatorcontrib><creatorcontrib>Gao, Jianmin</creatorcontrib><creatorcontrib>Gao, Zhiyong</creatorcontrib><creatorcontrib>Jiang, Hongquan</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rongxi</au><au>Peng, Caiyuan</au><au>Gao, Jianmin</au><au>Gao, Zhiyong</au><au>Jiang, Hongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><artnum>30</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the dilated convolution-long short-term memory (DC-LSTM), is proposed. The dilated convolution operation is used to extract the correlation between the predicted variable and correlational variables. The features extracted by dilated convolution operation and historical data of predicted variable are input into LSTM to obtain the desired multi-step prediction result. Furthermore, cross-correlation analyses (CCA) are applied to calculate the reasonable maximum prediction steps of chaotic time series. Actual applications of multi-step prediction were studied to demonstrate the effectiveness of the proposed model which has superiorities in RMSE, MAE and prediction accuracy because of the extraction of correlation between the predicted variable and correlational variables. Moreover, the proposed DC-LSTM model provides a new method for prediction of chaotic time series and lays a foundation for scientific data analysis of chaotic time series monitoring systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-019-1006-2</doi><orcidid>https://orcid.org/0000-0001-5958-0642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-03, Vol.39 (1), Article 30
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2316007325
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Chaos theory
Computational mathematics
Computational Mathematics and Numerical Analysis
Convolution
Correlation analysis
Data analysis
Feature extraction
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Prediction models
Time series
title A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dilated%20convolution%20network-based%20LSTM%20model%20for%20multi-step%20prediction%20of%20chaotic%20time%20series&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Wang,%20Rongxi&rft.date=2020-03-01&rft.volume=39&rft.issue=1&rft.artnum=30&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-019-1006-2&rft_dat=%3Cproquest_cross%3E2316007325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316007325&rft_id=info:pmid/&rfr_iscdi=true